2026届山东省聊城市莘县第一中学数学高一上期末联考模拟试题含解析_第1页
2026届山东省聊城市莘县第一中学数学高一上期末联考模拟试题含解析_第2页
2026届山东省聊城市莘县第一中学数学高一上期末联考模拟试题含解析_第3页
2026届山东省聊城市莘县第一中学数学高一上期末联考模拟试题含解析_第4页
2026届山东省聊城市莘县第一中学数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省聊城市莘县第一中学数学高一上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.3.定义在上的奇函数,当时,,则的值域是A. B.C. D.4.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.5.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},则M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}6.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.7.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个8.下列四个式子中是恒等式的是()A. B.C. D.9.若将函数图象向左平移个单位,则平移后的图象对称轴为()A. B.C. D.10.下列四个图形中,不是以x为自变量的函数的图象是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数(且)恒过的定点坐标为_____,若直线经过点且,则的最小值为___________.12.已知实数满足,则________13.函数的最小值为_________________14.已知,则____________________.15.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,____________.16.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.18.已知奇函数和偶函数满足(1)求和的解析式;(2)存在,,使得成立,求实数a的取值范围19.(1)若,求的值;(2)已知锐角,满足,若,求的值.20.已知直线经过直线与直线的交点,并且垂直于直线(Ⅰ)求交点的坐标;(Ⅱ)求直线的方程21.已知函数,(,,),且的图象相邻两个对称轴之间的距离为,且任意,都有恒成立.(1)求的最小正周期与对称中心;(2)若对任意,均有恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据充分条件、必要条件的概念求解即可.【详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A2、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D3、B【解析】根据函数为奇函数得到,,再计算时,得到答案.【详解】定义在上的奇函数,则,;当时,,则当时,;故的值域是故选:【点睛】本题考查了函数的值域,根据函数的奇偶性得到时,是解题的关键.4、C【解析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.5、B【解析】先化简集合N,再进行交集运算即得结果.【详解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故选:B.6、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.7、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B8、D【解析】,故错误,故错误,故错误故选9、A【解析】由图象平移写出平移后的解析式,再由正弦函数的性质求对称轴方程.【详解】,令,,则且.故选:A.10、C【解析】根据函数中每一个自变量有且只有唯一函数值与之对应,结合函数图象判断符合函数定义的图象即可.【详解】由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据对数函数过定点得过定点,再根据基本不等式“1”的用法求解即可.【详解】解:函数(且)由函数(且)向上平移1个单位得到,函数(且)过定点,所以函数过定点,即,所以,因为,所以所以,当且仅当,即时等号成立,所以的最小值为故答案为:;12、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.13、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键14、7【解析】将两边平方,化简即可得结果.【详解】因为,所以,两边平方可得,所以,故答案为7.【点睛】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.15、【解析】因为角与角关于轴对称,所以,,所以,所以答案:16、【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值.【详解】,所以,.当且仅当时,等号成立,且此时三边可以构成三角形.因此,该三角形面积的最大值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答案.【小问1详解】由题意A=1,,则,所以,又因为图象过点,所以,而,则,于是.【小问2详解】结合图象可知,函数的对称轴为:,令,即函数增区间为:.【小问3详解】的图象向右平移个单位长度得到:,于是,如图所示:因为在上有两个解,所以.18、(1),(2)【解析】(1)利用奇偶性得到方程组,求解和的解析式;(2)在第一问的基础上,问题转化为在上有解,分类讨论,结合对勾函数单调性求解出的最值,进而求出实数a的取值范围.【小问1详解】因为奇函数和偶函数满足①,所以②;联立①②得:,;【小问2详解】变形为,因为,所以,所以,当时,在上有解,符合要求;令,由对勾函数可知,当时,在上单调递减,在上单调递增,,要想上有解,只需,解得:,所以;若且,在上单调递增,要想上有解,只需,解得:,所以;综上:实数a的取值范围为19、(1)5;(2).【解析】(1)根据给定条件化正余的齐次式为正切,再代入计算作答.(2)根据给定条件利用差角的余弦公式求出,结合角的范围求出即可作答.【详解】(1)因,所以.(2)因,是锐角,则,,又,,因此,,,则,显然,于是得:,解得,所以的值为.20、(Ⅰ);(Ⅱ).【解析】(I)联立两条直线的方程,解方程组可求得交点坐标,已知直线的斜率为,和其垂直的直线斜率是,根据点斜式可写出所求直线的方程.试题解析:(Ⅰ)由得所以(,).(Ⅱ)因为直线与直线垂直,所以,所以直线的方程为.21、(1);,;(2).【解析】(1)由题意可知,再由求出,由恒成立,可得,即,求出,根据正弦函数的对称中心,,即可求解.(2)由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论