版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省凤城市一中2026届高二上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆上的一点M到其左焦点的距离为2,N是的中点,则等于()A.1 B.2C.4 D.82.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.3.过点且与原点距离最大的直线方程是()A. B.C. D.4.与空间向量共线的一个向量的坐标是()A. B.C. D.5.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.86.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.7.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.8.在空间直角坐标系中,若,,则()A. B.C. D.9.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.510.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种11.已知等差数列的前项和为,,,,则的值为()A. B.C. D.12.设、分别是椭圆()的左、右焦点,过的直线l与椭圆E相交于A、B两点,且,则的长为()A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数据:1,1,3,4,6的方差是______.14.已知圆,若圆的过点的三条弦的长,,构成等差数列,则该数列的公差的最大值是______.15.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______16.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,点在底面内的射影恰好是点,是的中点,且满足(1)求证:平面;(2)已知,直线与底面所成角的大小为,求二面角的大小18.(12分)解答下列两个小题:(1)双曲线:离心率为,且点在双曲线上,求的方程;(2)双曲线实轴长为2,且双曲线与椭圆的焦点相同,求双曲线的标准方程19.(12分)如图,已知矩形ABCD所在平面外一点P,平面ABCD,E、F分别是AB、PC的中点求证:(1)共面;(2)求证:20.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.21.(12分)已知点是椭圆上的一点,且椭圆的离心率.(1)求椭圆的标准方程;(2)两动点在椭圆上,总满足直线与的斜率互为相反数,求证:直线的斜率为定值.22.(10分)已知,使;不等式对一切恒成立.如果为真命题,为假命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先利用椭圆定义得到,再利用中位线定理得即可.【详解】由椭圆方程,得,由椭圆定义得,又,,又为的中点,为的中点,线段为中位线,∴.故选:C.2、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:3、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A4、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.5、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C6、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.7、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B9、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C10、C【解析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C11、A【解析】由可求得,利用可构造方程求得.【详解】,,,,,解得:.故选:A.12、C【解析】由椭圆的定义得:,,结合条件可得,即可得答案.【详解】由椭圆的定义得:,,又,,所以,由椭圆知,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##3.6【解析】先计算平均数,再计算方差.【详解】该组数据的平均数为,方差为故答案为:14、2【解析】根据题意,求得过点的直线截圆所得弦长的最大值和最小值,即可求得公差的最大值.【详解】圆的圆心,半径,设点为点,因为,故点在圆内,当直线过点,且经过圆心时,该直线截圆所得弦长取得最大值;当直线过点,且与直线垂直时,该直线截圆所得弦长取得最小值,此时,则满足题意的直线为,即,又,则该直线截圆所得弦长为;根据题意,要使得数列的公差最大,则,故最大公差.故答案为:.15、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:1516、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)分别证明出和,利用线面垂直的判定定理即可证明;(2)以C为原点,为x、y、z轴正方向建立空间直角坐标系,用向量法求二面角的平面角.【小问1详解】因为点在底面内的射影恰好是点,所以面.因为面,所以.因为是的中点,且满足.所以,所以.因为,所以,即,所以.因为,面,面,所以平面.【小问2详解】∵面,∴直线与底面所成角为,即.因为,所以由(1)知,,因,所以,.如图示,以C为原点,为x、y、z轴正方向建立空间直角坐标系.则,,,,所以,设,由得,,即.则.设平面BDC1的一个法向量为,则,不妨令,则.因为面,所以面的一个法向量为记二面角的平面角为,由图知,为锐角.所以,即.所以二面角的大小为.18、(1);(2).【解析】(1)由可得,再将点代入方程,联立解出答案,可得答案.(2)先求出椭圆的焦点,则双曲线的焦点在轴上,由条件可得,且,从而得出答案.详解】(1)由,得,即,又,即,双曲线的方程即为,点坐标代入得,解得所以,双曲线的方程为(2)椭圆的焦点为,设双曲线的方程为,所以,且,所以,所以,双曲线的方程为19、(1)详见解析;(2)详见解析.【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,,,求出,,,,0,,,,,从而,由此能证明共面(2)求出,0,,,,,由,能证明【详解】证明:如图,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设,,,则0,,0,,2b,,2b,,0,,为AB的中点,F为PC的中点,0,,b,,b,,,2b,,共面.(2),【点睛】本题考查三个向量共面的证明,考查两直线垂直的证明,是基础题20、(1);(2)存在,,.【解析】(1)根据椭圆E:(a,b>0)过M(2,),N(,1)两点,直接代入方程解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在,当切线斜率不存在时,验证即可;在该圆的方程存在时,利用弦长公式结合韦达定理得到求解.【详解】(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以,解得,所以,所以椭圆E的方程为.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为,联立得,则△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,所以,则所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以,,①当时,,因为,所以,所以,所以,当且仅当时取”=”.②当时,.③当AB的斜率不存在时,两个交点为或,所以此时,综上,|AB|的取值范围为,即:【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单2、设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则(k为直线斜率)注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零21、(1)(2)证明见解析【解析】(1)根据已知条件列方程组,解方程组求得,从而求得椭圆的标准方程.(2)设出直线的方程并与椭圆方程联立,由此求得,同理求得,从而化简求得直线的斜率为定值.【小问1详解】由题可知,解得,从而粚圆方程为.【小问2详解】证明设直线的斜率为,则,,联立直线与椭圆的方程,得,整理得,从而,于是,由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年海绵城市理念与土木工程设计
- 2026年媒介对电气传动控制的影响
- 2026春招:新兴际华题库及答案
- 2026春招:项目经理真题及答案
- 2026春招:潍柴动力笔试题及答案
- 货梯安全操作培训内容课件
- 货柜安全检查培训心得
- 护理专业沟通技巧培训
- 医疗器械质量与安全监管
- 2026年德州职业技术学院高职单招职业适应性测试备考题库有答案解析
- 国民经济行业分类代码(2024年版)
- 2025届央企校招笔试真题及答案
- 部队防护基础知识课件
- 软装代购合同协议
- 广东省东莞市2024-2025学年高一上学期1月期末英语试题【含答案解析】
- 《景观设计原理》课件
- 我国十大类再生废品资源回收现状和行情分析
- 2024北京朝阳四年级(上)期末数学(教师版)
- 2022版科学课程标准解读-面向核心素养的科学教育(课件)
- 上海市静安区2024届高三二模语文试卷(解析版)
- 使用钉钉的方案
评论
0/150
提交评论