河北省唐山市乐亭一中2026届数学高二上期末调研模拟试题含解析_第1页
河北省唐山市乐亭一中2026届数学高二上期末调研模拟试题含解析_第2页
河北省唐山市乐亭一中2026届数学高二上期末调研模拟试题含解析_第3页
河北省唐山市乐亭一中2026届数学高二上期末调研模拟试题含解析_第4页
河北省唐山市乐亭一中2026届数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市乐亭一中2026届数学高二上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.2.下列命题是真命题的个数为()①不等式的解集为②不等式的解集为R③设,则④命题“若,则或”为真命题A1 B.2C.3 D.43.参加抗疫的300名医务人员,编号为1,2,…,300.为了解这300名医务人员的年龄情况,现用系统抽样的方法从中抽取15名医务人员的年龄进行调查.若抽到的第一个编号为6,则抽到的第二个编号为()A.21 B.26C.31 D.364.一盒子里有黑色、红色、绿色的球各一个,现从中选出一个球.事件选出的球是红色,事件选出的球是绿色.则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件5.直线关于直线对称的直线方程为()A. B.C. D.6.直线的倾斜角的取值范围是()A. B.C. D.7.某企业为节能减排,用万元购进一台新设备用于生产.第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为万元.设该设备使用了年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于()A. B.C. D.8.金刚石的成分为纯碳,是自然界中存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它外接球的体积为()A. B.C. D.9.若直线经过,,两点,则直线的倾斜角的取值范围是()A. B.C. D.10.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.911.过点且斜率为的直线方程为()A. B.C. D.12.直线(t为参数)被圆所截得的弦长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.14.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________15.若函数在区间内存在最大值,则实数的取值范围是____________.16.过点作圆的两条切线,切点为A,B,则直线的一般式方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,离心率.(1)求椭圆的方程;(2)设直线与椭圆相交于A、B两点,求.18.(12分)已知是公差不为0的等差数列,其前项和为,,且,,成等比数列.(1)求和;(2)若,数列的前项和为,且对任意的恒成立,求实数的取值范围.19.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.20.(12分)已知抛物线:上的点到焦点的距离为(1)求抛物线的方程;(2)设纵截距为的直线与抛物线交于,两个不同的点,若,求直线的方程21.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,22.(10分)已知,2,4,6中的三个数为等差数列的前三项,且100不在数列中,102在数列中.(1)求数列的通项;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.2、B【解析】举反例判断A,解一元二次不等式确定B,由导数的运算法则求导判断C,利用逆否命题判断D【详解】显然不是的解,A错;,B正确;,,C错;命题“若,则或”的逆否命题是:若且,则,是真命题,原命题也是真命题,D正确真命题个数2.故选:B3、B【解析】将300个数编号:001,002,003,,3000,再平均分为15个小组,然后按系统抽样方法得解.【详解】将300个数编号:001,002,003,,3000,再平均分为15个小组,则第一编号为006,第二个编号为.故选:B.4、A【解析】根据事件的关系进行判断即可.【详解】由题意可知,事件与为互斥事件,但事件不是必然事件,所以,事件与事件是互斥事件,不是对立事件.故选:A.【点睛】本题考查事件关系的判断,考查互斥事件和对立事件概率的理解,属于基础题.5、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C6、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.7、D【解析】设该设备第年的营运费为万元,利用为等差数列可求年平均盈利额,利用基本不等式可求其最大值.【详解】设该设备第年的营运费为万元,则数列是以2为首项,2为公差的等差数列,则,则该设备使用年的营运费用总和为,设第n年的盈利总额为,则,故年平均盈利额为,因为,当且仅当时,等号成立,故当时,年平均盈利额取得最大值4.故选:D.【点睛】本题考查等差数列在实际问题中的应用,注意根据题设条件概括出数列的类型,另外用基本不等式求最值时注意检验等号成立的条件.8、A【解析】求得外接球的半径,进而计算出外接球体积.【详解】设,正八面体的棱长为,根据正八面体的性质可知:,所以是外接球的球心,且半径,所以外接球的体积为.故选:A9、D【解析】应用两点式求直线斜率得,结合及,即可求的范围.【详解】根据题意,直线经过,,,∴直线的斜率,又,∴,即,又,∴;故选:D10、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C11、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.12、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.14、【解析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以,,即四边形面积等于.故答案为:.15、【解析】首先利用导数判断函数的单调性,再根据函数在开区间内存在最大值,可判断极大值点就是最大值点,列式求解.【详解】由题可知:所以函数在单调递减,在单调递增,故函数的极大值为.所以在开区间内的最大值一定是又,所以得实数的取值范围是故答案为:【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式,不要忽略这个不等式.16、【解析】已知圆的圆心,点在以为直径的圆上,两圆相减就是直线的方程.【详解】,圆心,点在以为直径的圆上,,所以圆心是,以为直径的圆的圆的方程是,直线是两圆相交的公共弦所在直线,所以两圆相减就是直线的方程,,所以直线的一般式方程为.故答案为:【点睛】结论点睛:过圆外一点引圆的切线,那么以圆心和圆外一点连线段为直径的圆与已知圆相减,就是切点所在直线方程,或是两圆相交,两圆相减,就是公共弦所在直线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意得,,再结合即可求得答案.(2)设,,直接联立方程得,再结合韦达定理,利用弦长公式和点到线的距离公式得,点M到直线的距离,进而可得.【详解】解:(1)由题意得,,结合,解得所以椭圆的方程为:.(2)由得即,经验证.设,.所以,,故因为点M到直线的距离,所以.【点睛】本题考查直线与椭圆位置关系,椭圆的方程,弦长公式等,考查运算能力,是基础题.18、(1),;(2).【解析】(1)求出,即得数列的和;(2)由题得,再利用分组求和求出,得到,令,判断函数的单调性得解.【详解】(1)设数列的公差为,由已知得,,即,整理得,又,,;(2)由题意:,,,令,则,即对任意的恒成立,是单调递增数列,,只需,所以.【点睛】方法点睛:求数列的最值,常用数列的单调性求解,求数列的单调性,一般利用定义法作差或作商判断.19、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.20、(1);(2)【解析】(1)利用抛物线的性质即可求解.(2)设直线方程,与抛物线联立,利用韦达定理,即可求解.【详解】(1)由题设知,抛物线的准线方程为,由点到焦点的距离为,得,解得,所以抛物线的标准方程为(2)设,,显然直线的斜率存在,故设直线的方程为,联立消去得,由得,即所以,又因为,,所以,所以,即,解得,满足,所以直线的方程为21、(1)①;②证明见解析,(2)最少为6.56吨【解析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论