版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西北农林科技大学附属中学2026届数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,在()A.25 B.30C.32 D.642.若复数z满足(其中为虚数单位),则()A. B.C. D.3.椭圆C:的焦点为,,点P在椭圆上,若,则的面积为()A.48 B.40C.28 D.244.已知等比数列满足,,则()A.21 B.42C.63 D.845.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.6.如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A. B.C. D.7.直线的倾斜角是()A. B.C. D.8.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.9.已知二次函数交轴于,两点,交轴于点.若圆过,,三点,则圆的方程是()A. B.C. D.10.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量11.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定12.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,且满足,若对于任意的,不等式恒成立,则实数的取值范围为____________.14.在不等边△ABC(三边均不相等)中,三个内角A,B,C所对的边分别为a,b,c,且有,则角C的大小为________15.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______16.曲线在点M(π,0)处的切线方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线,直线与交于两点且(为坐标原点)(1)求抛物线的方程;(2)设,若直线的倾斜角互补,求的值18.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.19.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值20.(12分)点与定点的距离和它到直线:的距离的比是常数.(1)求动点的轨迹的方程;(2)点在(1)中轨迹上运动轴,为垂足,点满足,求点轨迹方程.21.(12分)已知数列的各项均为正数,,为自然对数的底数(1)求函数的单调区间,并比较与的大小;(2)计算,,,由此推测计算的公式,并给出证明;22.(10分)如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题中条件,得出数列公差,进而可求出结果.【详解】由得,所以数列是以为公差的等差数列,又,所以.故选:A.【点睛】本题主要考查等差数列的基本量运算,属于基础题型.2、B【解析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故选:B3、D【解析】根据给定条件结合椭圆定义求出,再判断形状计算作答.【详解】椭圆C:的半焦距,长半轴长,由椭圆定义得,而,且,则有是直角三角形,,所以的面积为24.故选:D4、D【解析】设等比数列公比为q,根据给定条件求出即可计算作答.【详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D5、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A6、B【解析】利用空间向量的基本定理,用,,表示向量【详解】因为是的中点,是的中点,,故选:B7、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.8、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D9、C【解析】由已知求得点A、B、C的坐标,则有AB的垂直平分线必过圆心,所以设圆的圆心为,由,可求得圆M的半径和圆心,由此求得圆的方程.【详解】解:由解得或,所以,又令,得,所以,因为圆过,,三点,所以AB的垂直平分线必过圆心,所以设圆的圆心为,所以,即,解得,所以圆心,半径,所以圆的方程是,即,故选:C10、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.11、A【解析】∵且,∴,又,∴,故选A.12、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,然后当时,由,得,两式相减可求出,再验证,从而可得数列为等比数列,进而可求出,再将问题转化为在上恒成立,所以,从而可求出实数的取值范围【详解】当时,,得,当时,由,得,两式相减得,得,满足此式,所以,因为,所以数列是以为公比,为首项的等比数列,所以,所以对于任意的,不等式恒成立,可转化为对于任意的,恒成立,即在上恒成立,所以,解得或,所以实数的取值范围为故答案为:【点睛】关键点点睛:此题考查数列通项公的求法,等比数列求和公式的应用,考查不等式恒成立问题,解题的关键是求出数列的通项公式后求得,再将问题转化为在上恒成立求解即可,考查数学转化思想,属于较难题14、【解析】由正弦定理可得,又,,,,,在三角形中,.考点:1正弦定理;2正弦的二倍角公式.15、【解析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【点睛】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.16、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用韦达定理法即求;(2)由题可求,,再结合条件即得.【小问1详解】设,,由,得,故,由,可得,即,∴,故抛物线的方程为:;【小问2详解】设的倾斜角为,则的倾斜角为,∴由,得,∴,∴,同理,由,得,∴,即,故.18、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范围是.【点睛】本题考查了简易逻辑的判定方法、集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题19、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ,因为平面PAQ,平面PAQ,所以MC//平面PAQ,因为,所以面PAQ//面MNC【小问2详解】因为PD⊥CD,PD⊥AD,AD⊥CD故以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DP所在直线为z轴建立空间直角坐标系,则,,,设平面NMC的法向量为,则,令得:,所以,平面NDC的法向量为,则,设二面角M-NC-D的大小为,显然为锐角,则20、(1);(2)【解析】(1)根据题意用表示出与,再代入,再化简即可得出答案。(2)设,利用表示出点,再将点代入椭圆,化简即可得出答案。【详解】(1)由题意知,所以化简得:(2)设,因为,则将代入椭圆得化简得【点睛】本题考查轨迹方程,一般求某点的轨迹方程,只需要设该点为,利用所给条件建立的关系式,化简即可。属于基础题。21、(1)的单调递增区间为,单调递减区间为;(2)详见解析【解析】(1)求出的定义域,利用导数求其最大值,得到,取即可得出答案.(2)由,变形求得,,,由此推测:然后用数学归纳法证明即可.【小问1详解】的定义域为,当,即时,单调递增;当,即时,单调递减故的单调递增区间为,单调递减区间为当时,,即令,得,即【小问2详解】;;由此推测:①下面用数学归纳法证明①(1)当时,左边右边,①成立(2)假设当时,①成立,即当时,,由归纳假设可得所以当时,①也成立根据(1)(2),可知①对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年单招殡葬面试题及答案
- 2026年青岛远洋船员职业学院单招综合素质笔试模拟试题带答案解析
- 2026年山东信息职业技术学院单招综合素质笔试参考题库带答案解析
- 2026年山东传媒职业学院高职单招职业适应性测试备考试题有答案解析
- 2025年皮质糖皮质激素类药物应用模拟测试卷答案及解析
- 2026年陕西国防工业职业技术学院单招综合素质笔试备考题库带答案解析
- 安徽省合肥市庐阳区第六中学2026届高二数学第一学期期末联考试题含解析
- 2025年地理地理信息系统测试卷及答案
- 2026年黄河水利职业技术学院高职单招职业适应性测试模拟试题有答案解析
- 2025年G3锅炉水处理考试题库附答案
- 2024版建设工程质量常见多发问题防治措施汇编(房建篇)
- 2025江阴事业单位笔试真题
- 江苏省2025年中职职教高考文化统考数学试题答案
- 2025年中国电子产品租赁行业市场占有率及投资前景预测分析报告
- 商务泰语会话教程课件
- 套改士官申请书
- 2025年1月浙江省高考地理试卷(含答案)
- 电缆更换施工方案
- 风筝制作教育课件
- JCT 871-2023 镀银玻璃镜 (正式版)
- 2024年广东深圳市龙岗区南湾街道综合网格员招聘笔试冲刺题(带答案解析)
评论
0/150
提交评论