版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省资阳市川中丘陵地区信息化试点班级2026届高一上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数图像大致为()A. B.C. D.2.已知幂函数过点则A.,且在上单调递减B.,且在单调递增C.且在上单调递减D.,且在上单调递增3.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.4.下列与的终边相同的角的集合中正确的是()A. B.C. D.5.函数的值域是A. B.C. D.6.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.7.已知三个变量随变量变化数据如下表:则反映随变化情况拟合较好的一组函数模型是A. B.C. D.8.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)9.已知函数有唯一零点,则负实数()A. B.C.-3 D.-210.若函数满足,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,使得,则实数a的取值范围是___________.12.已知曲线且过定点,若且,则的最小值为_____13.已知,若,则实数的取值范围为__________14.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).15.函数,且)的图象恒过定点,则点的坐标为___________;若点在函数的图象上,其中,,则的最大值为___________.16.不等式的解集是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.18.已知二次函数区间[0,3]上有最大值4,最小值0(1)求函数的解析式;(2)设.若在时恒成立,求k的取值范围19.如图,正方形的边长为,,分别为边和上的点,且的周长为2.(1)求证:;(2)求面积的最小值.20.黄山市某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足关系:.肥料成本投入为元,其它成本投入(如培育管理,施肥等人工费)元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?21.某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:月份用气量(立方米)煤气费(元)144.0022514.0033519.00该市煤气收费的方法是:煤气费=基本费+超额费+保险费若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元(1)根据上面的表格求A,B,C的值;(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B2、A【解析】由幂函数过点,求出,从而,在上单调递减【详解】幂函数过点,,解得,,在上单调递减故选A.【点睛】本题考查幂函数解析式的求法,并判断其单调性,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.3、A【解析】求出函数的周期,函数的奇偶性,判断求解即可【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A考点:三角函数的性质.4、C【解析】由任意角的定义判断【详解】,故与其终边相同的角的集合为或角度制和弧度制不能混用,只有C符合题意故选:C5、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.6、D【解析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.7、B【解析】根据幂函数、指数函数、对数函数增长速度的不同可得结果.【详解】从题表格可以看出,三个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,呈指数函数变化,变量的增长速度最慢,对数型函数变化,故选B【点睛】本题主要考查幂函数、指数函数、对数函数模型的应用,意在考查综合利用所学知识解决问题的能力,属于简单题.8、A【解析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A9、C【解析】注意到直线是和的对称轴,故是函数的对称轴,若函数有唯一零点,零点必在处取得,所以,又,解得.选C.10、A【解析】,所以,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将“对,使得,”转化为,再根据二次函数的性质和指数函数的单调性求得最值代入即可解得结果.【详解】当时,,∴当时,,当时,为增函数,所以时,取得最大值,∵对,使得,∴,∴,解得.故答案为:.12、【解析】由指数函数图象所过定点求出,利用“1”的代换凑配出定值后用基本不等式得出最小值.【详解】令,,则,∴定点为,,,当且仅当时等号成立,即时取得最小值.故答案为:.【点睛】本题考查指数函数的图象与性质,考查用基本不等式求最值.“1”的代换是解题关键.13、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题14、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.15、①②.##0.5【解析】根据对数函数图象恒过定点求出点A坐标;代入一次函数式,借助均值不等式求解作答.【详解】函数,且)中,由得:,则点;依题意,,而,,则,当且仅当2m=n=1时取“=”,即,所以点的坐标为,的最大值为.故答案为:;16、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.18、(1);(2).【解析】(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式(2)求解的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解【详解】(1)其对称轴x=1,x∈[0,3]上,∴当x=1时,取得最小值为﹣m+n+1=0①当x=3时,取得最大值为3m+n+1=4②由①②解得:m=1,n=0,故得函数的解析式为:;(2)由,令,,则,问题转化为当u∈[,8]时,恒成立,即u2﹣4u+1﹣ku2≤0恒成立,∴k设,则t∈[,8],得:1﹣4t+t2=(t﹣2)2﹣3≤k当t=8时,(1﹣4t+t2)max=33,故得k的取值范围是[33,+∞).19、(1)证明见解析;(2).【解析】(1)补形得证明其与全等,从而得证.(2)引进参数,由已知建立参数变量之间的等量关系,再用方程根的判别式获得变量最值,进一步得到所求面积最值.【详解】(1)如图:延长至,使,连接,则.故,,.又.,即.(2)设,,,则,,,于是,整理得:,.即.又,,当且仅当时等式成立.此时,因此当,时,取最小值.的最小值为.【点睛】方法点睛:引进参数建立参变量方程,再变换主次元,利用方程根的判别式,确定参数取值范围是求最值的方法之一.20、(1)f(2)当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元【解析】(1)用销售收入减去成本求得的函数关系式.(2)结合二次函数的性质、基本不等式来求得最大利润以及此时对应的施肥量.小问1详解】由已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年弹性设计在绿色施工中的应用
- 市政配套专题汇报
- 2026年电气故障处理与应急预案
- 2026春招:西藏航空真题及答案
- 医疗信息化的礼仪与操作规范
- 2026年广西生态工程职业技术学院高职单招职业适应性测试备考试题有答案解析
- 2026年贵州农业职业学院单招综合素质笔试模拟试题带答案解析
- 个性化医疗与基因治疗技术
- 2026年贵州工业职业技术学院单招职业技能笔试备考题库带答案解析
- 护理安全管理与应急预案制定与实施策略
- 全球AI应用平台市场全景图与趋势洞察报告
- 2026.05.01施行的中华人民共和国渔业法(2025修订)课件
- 维持性血液透析患者管理
- 2025年大学大四(临床诊断学)症状鉴别诊断试题及答案
- 2025年消控员初级证试题及答案
- 人力资源调研报告
- 幼儿园食堂试卷(含答案)
- 2026年北京公务员考试试题及答案
- 《房屋市政工程第三方安全巡查服务标准》
- 儿童肥胖的长期管理
- 国开2025年《行政领导学》形考作业1-4答案
评论
0/150
提交评论