重庆市南岸区2026届高二上数学期末质量检测模拟试题含解析_第1页
重庆市南岸区2026届高二上数学期末质量检测模拟试题含解析_第2页
重庆市南岸区2026届高二上数学期末质量检测模拟试题含解析_第3页
重庆市南岸区2026届高二上数学期末质量检测模拟试题含解析_第4页
重庆市南岸区2026届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市南岸区2026届高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.2.已知且,则下列不等式恒成立的是A. B.C. D.3.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.4.设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A. B.C. D.5.已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点()A. B.C. D.6.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.17.已知数列满足:,,则()A. B.C. D.8.已知两条不同直线和平面,下列判断正确的是()A.若则 B.若则C.若则 D.若则9.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.11.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.12.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图茎叶图记录了A、两名营业员五天的销售量,若A的销售量的平均数比的销售量的平均数多1,则A营业员销售量的方差为___________.14.如图,已知椭圆+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,则点G横坐标的取值范围为________15.在数列中,,,,若数列是递减数列,数列是递增数列,则______16.已知直线和直线垂直,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,18.(12分)两个顶点、的坐标分别是、,边、所在直线的斜率之积等于,顶点的轨迹记为.(1)求顶点的轨迹的方程;(2)若过点作直线与轨迹相交于、两点,点恰为弦中点,求直线的方程;(3)已知点为轨迹的下顶点,若动点在轨迹上,求的最大值.19.(12分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.20.(12分)已知圆,圆.(1)试判断圆C与圆M的位置关系,并说明理由;(2)若过点的直线l与圆C相切,求直线l的方程.21.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.22.(10分)已知抛物线的准线方程是.(Ⅰ)求抛物线方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.2、C【解析】∵且,∴∴选C3、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.4、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.5、D【解析】根据圆的切线性质,结合圆的标准方程、圆与圆的位置关系进行求解即可.【详解】因为、是圆的两条切线,所以,因此点、在以为直径的圆上,因为点是直线:上的动点,所以设,点,因此的中点的横坐标为:,纵坐标为:,,因此以为直径的圆的标准方程为:,而圆:,得:,即为直线的方程,由,所以直线经过定点,故选:D【点睛】关键点睛:由圆的切线性质得到点、在以为直径的圆上,运用圆与圆的位置关系进行求解是解题的关键.6、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C7、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A8、D【解析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A:若,则与可能平行,可能相交,可能异面,故选项A错误;对于选项B:若,则,故选项B错误;对于选项C:当时不满足,故选项C错误;综上,可知选项D正确.故选:D.9、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A10、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.11、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.12、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、44【解析】先根据题意求出x的值,进而利用方差公式求出A营业员销售量的方差.【详解】由A的平均数比的平均数多1知,A的总量比的总量多5,所以,A的平均数为17,方差为.故答案为:4414、【解析】设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,求出线段的垂直平分线方程,可求得点的横坐标,利用不等式的基本性质可求得点的横坐标的取值范围.【详解】设直线的方程为,联立,整理可得,因为直线过椭圆的左焦点,所以方程有两个不相等的实根设点、,设的中点为,则,,直线的垂直平分线的方程为,令,则.因为,所以故点的横坐标的取值范围.故答案为:15、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:16、【解析】根据两条直线相互垂直的条件列方程,解方程求得m的值.【详解】由于两条直线垂直,故,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元18、(1)(2)(3)【解析】(1)先表示出边、所在直线的斜率,然后根据两条直线的斜率关系建立方程即可;(2)联立直线与椭圆方程,利用韦达定理和中点坐标公式即可求出直线的斜率;(3)先表示出,然后利用椭圆的性质,进而确定的最大值.【小问1详解】设点,则由可得:化简得:故顶点的轨迹的方程:【小问2详解】当直线的斜率不存在时,显然不符合题意;当直线的斜率存在时,设直线的方程为联立方程组消去可得:设直线与轨迹的交点,的坐标分别为由韦达定理得:点为、两点的中点,可得:,即则有:解得:故求直线的方程为:【小问3详解】由(1)可知,设则有:又点满足,即由椭圆的性质得:所以当时,19、(1)证明见解析;(2)证明见解析.【解析】(1)根据给定条件,利用线面平行的判定推理作答.(2)利用正四棱锥的结构特征,结合线面垂直的判定推理作答.小问1详解】在正四棱锥中,由正方形得:,而平面,平面,所以平面.【小问2详解】在正四棱锥中,O为底面对角线的交点,则O是AC,BD的中点,而,,则,,因,平面,所以平面.20、(1)圆C与圆M相交,理由见解析(2)或【解析】(1)利用圆心距与半径的关系即可判断结果;(2)讨论,当直线l的斜率不存在时则方程为,当直线l的斜率存在时,设其方程为,利用圆心到直线的距离等于半径计算即可得出结果.【小问1详解】把圆M的方程化成标准方程,得,圆心为,半径.圆C的圆心为,半径,因为,所以圆C与圆M相交,【小问2详解】①当直线l的斜率不存在时,直线l的方程为到圆心C距离为2,满足题意;②当直线l的斜率存在时,设其方程为,由题意得,解得,故直线l的方程为.综上,直线l的方程为或.21、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论