2026届北京市昌平区数学高三第一学期期末学业质量监测试题含解析_第1页
2026届北京市昌平区数学高三第一学期期末学业质量监测试题含解析_第2页
2026届北京市昌平区数学高三第一学期期末学业质量监测试题含解析_第3页
2026届北京市昌平区数学高三第一学期期末学业质量监测试题含解析_第4页
2026届北京市昌平区数学高三第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市昌平区数学高三第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是()A. B. C. D.2.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要3.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.4.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.25.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有6.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.7.已知复数,则()A. B. C. D.8.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.9.已知是虚数单位,若,则()A. B.2 C. D.1010.已知,,由程序框图输出的为()A.1 B.0 C. D.11.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.12.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数为_______________.14.已知数列中,为其前项和,,,则_________,_________.15.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.16.若满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.18.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.19.(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.20.(12分)如图,在直三棱柱中,,点分别为和的中点.(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.(Ⅱ)求二面角的余弦值.21.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.22.(10分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边.易求得,由,知,由余弦定理知其中,∴故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.2、B【解析】

利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。3、D【解析】

先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.4、C【解析】

由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.5、C【解析】

根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.6、B【解析】

先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.7、B【解析】

利用复数除法、加法运算,化简求得,再求得【详解】,故.故选:B【点睛】本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.8、B【解析】

计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.9、C【解析】

根据复数模的性质计算即可.【详解】因为,所以,,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.10、D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.11、C【解析】

根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.12、A【解析】

画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

把按照二项式定理展开,可得的展开式中的系数.【详解】解:,故它的展开式中的系数为,故答案为:.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14、8(写为也得分)【解析】

由,得,.当时,,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.15、【解析】

由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.【详解】如图,连接,,,∵分别为棱的中点,∴,又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.故答案为:.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.16、4【解析】

作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【详解】(1)在中,,由余弦定理得,∴,∴,由题意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以为坐标原点,以,,的方向为,,轴的正方向,建立空间直角坐标系.∵平面,∴在平面上的射影是,∴与平面所成的角是,∴最大时,即,点为中点.,,,,,,,设平面的法向量,由,得,令,得,所以平面的法向量,同理,设平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值为.【点睛】本题考查线面垂直的判定定理以及利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.18、(1)(2)【解析】

本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:19、(1)见解析(2)【解析】试题分析:(1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立;(2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,∴平面,∴.由即及为的中点,可得为等边三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴为直线与所成的角,由(1)可得,∴,∴,设,则,取的中点,连接,过作的平行线,可建立如图所示的空间直角坐标系,则,∴,所以,设为平面的法向量,则,即,取,则为平面的一个法向量,∵,则直线与平面所成角的正弦值为.点睛:判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.平面与平面垂直的判定方法:①定义法.②利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直.20、(Ⅰ)存在点满足题意,且,证明详见解析;(Ⅱ).【解析】

(Ⅰ)可考虑采用补形法,取的中点为,连接,可结合等腰三角形性质和线面垂直性质,先证平面,即,若能证明,则可得证,可通过我们反推出点对应位置应在处,进而得证;(Ⅱ)采用建系法,以为坐标原点,以分别为轴建立空间直角坐标系,分别求出两平面对应法向量,再结合向量夹角公式即可求解;【详解】(Ⅰ)存在点满足题意,且.证明如下:取的中点为,连接.则,所以平面.因为是的中点,所以.在直三棱柱中,平面平面,且交线为,所以平面,所以.在平面内,,,所以,从而可得.又因为,所以平面.因为平面,所以平面平面.(Ⅱ)如图所示,以为坐标原点,以分别为轴建立空间直角坐标系.易知,,,,所以,,.设平面的法向量为,则有取,得.同理可求得平面的法向量为.则.由图可知二面角为锐角,所以其余弦值为.【点睛】本题考查面面垂直的判定定理、向量法求二面角的余弦值,属于中档题21、(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【解析】

(1)将代入,可得,所以曲线的直角坐标方程为.由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数.(2)由题可设,,,所以,,,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为.22、Ⅰ详见解析;Ⅱ①,②或.【解析】

Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【详解】证明:Ⅰ在图1中,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论