江西省师范大学附属中学2026届高一数学第一学期期末学业水平测试模拟试题含解析_第1页
江西省师范大学附属中学2026届高一数学第一学期期末学业水平测试模拟试题含解析_第2页
江西省师范大学附属中学2026届高一数学第一学期期末学业水平测试模拟试题含解析_第3页
江西省师范大学附属中学2026届高一数学第一学期期末学业水平测试模拟试题含解析_第4页
江西省师范大学附属中学2026届高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省师范大学附属中学2026届高一数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值为A.-1 B.3C.-3 D.12.函数是奇函数,则的值为()A.1 B.C.0 D.3.若a<b<0,则下列不等式中成立的是()A.-a<-bC.a>-b D.4.下列命题中是真命题的个数为()①函数的对称轴方程是;②函数的一个对称轴方程是;③函数的图象关于点对称;④函数的值域为A1 B.2C.3 D.45.已知向量且,则x值为().A.6 B.-6C.7 D.-76.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.47.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.8.已知指数函数(,且),且,则的取值范围()A. B.C. D.9.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)10.已知指数函数是减函数,若,,,则m,n,p的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.化简:=____________12.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.13.请写出一个最小正周期为,且在上单调递增的函数__________14.已知,则的值为______15.已知函数在上单调递减,则实数的取值范围是______16.若函数在区间上为增函数,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数(1)①试解释与的实际意义;②写出函数应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由18.已知函数(且).(1)判断函数的奇偶性,并证明;(2)若,不等式在上恒成立,求实数的取值范围;(3)若且在上最小值为,求m的值.19.已知,,,.(1)求的值;(2)求的值:(3)求的值.20.已知角,且.(1)求的值;(2)求的值.21.求证:角为第二象限角的充要条件是

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:代数式可以配凑成,因,故可以利用基本不等式直接求最小值.详解:,当且仅当时等号成立,故选A.点睛:利用基本不等式求最值时,要注意“一正、二定、三相等”,有时题设给定的代数式中没有和为定值或积为定值的形式,我们需要对代数式变形,使得变形后的代数式有和为定值或者积为定值.特别要注意检验等号成立的条件是否满足.2、D【解析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.3、C【解析】根据函数y=x的单调性,即可判断选项A是否正确;根据函数y=1x在-∞,0上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项【详解】因为a<b<0,所以-a>-b>0,又函数y=x在0,+∞上单调递增,所以因为a<b<0,函数y=1x在-∞,0上单调递减,所以因为a<b<0,所以-a>-b>0,又a=-a,所以a>-b,故因为a<b<0,两边同时除以b,可知ab>1,故D故选:C.4、B【解析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择.【详解】对①:函数的对称轴方程是,故①是假命题;对②:函数的对称轴方程是:,当时,其一条对称轴是,故②正确;对函数,其函数图象如下所示:对③:数形结合可知,该函数的图象不关于对称,故③是假命题;对④:数形结合可知,该函数值域为,故④为真命题.综上所述,是真命题的有2个.故选:.5、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.6、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积8、A【解析】根据指数函数的单调性可解决此题【详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A9、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.10、B【解析】由已知可知,再利用指对幂函数的性质,比较m,n,p与0,1的大小,即可得解.【详解】由指数函数是减函数,可知,结合幂函数的性质可知,即结合指数函数的性质可知,即结合对数函数的性质可知,即,故选:B.【点睛】方法点睛:本题考查比较大小,比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法,解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用三角函数的平方关系式,化简求解即可【详解】===又,所以,所以=,故填:【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力12、【解析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积13、或(不唯一).【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).14、2【解析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【详解】因,则,所以的值为2.故答案为:215、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.16、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上残留的污渍的;定义域为,值域为,在区间内单调递减.(2)当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.【解析】(1)①根据函数的实际意义说明即可;②由实际意义可得出函数的定义域,值域,单调性.(2)求出两种清洗方法污渍的残留量,并进行比较即可.【小问1详解】①表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上污渍的.②函数的定义域为,值域为,在区间内单调递减.【小问2详解】设清洗前衣服上的污渍为1,用单位的水,清洗一次后残留的污渍为,则;用单位的水清洗1次,则残留的污渍为,然后再用单位的水清洗1次,则残留的污渍为,因为,所以当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.18、(1)为奇函数,证明见解析.(2).(3).【解析】(1)根据函数的奇偶性的定义可得证;(2)由(1)得出是定义域为的奇函数,再判断出是上的单调递增,进而转化为,进而可求解;(3)利用,可得到,所以,令,则,进而对二次函数对称轴讨论求得最值即可求出的值.【小问1详解】解:函数的定义域为,又,∴为奇函数.【小问2详解】解:,∵,∴,或(舍).∴单调递增.又∵为奇函数,定义域为R,∴,∴所以不等式等价于,,,∴.故的取值范围为.【小问3详解】解:,解得(舍),,令,∵,∴,,当时,,解得(舍),当时,,解得(舍),综上,.19、(1);(2);(3).【解析】(1)同角三角函数平方关系求得,,再由及差角余弦公式求值即可.(2)由诱导公式、二倍角余弦公式可得,即可求值.(3)由(1)及和角正余弦公式求、,由(2)及平方关系求,最后应用差角余弦公式求,结合角的范围求.【小问1详解】由题设,,,∴,,又.【小问2详解】.【小问3详解】由,则,由,则,∴,,又,,则,∴,而,故.20、(1)(2)【解析】(1)依题意可得,再根据同角三角函数的基本关系将弦化切,即可得到的方程,解得,再根据的范围求出;(2)根据同角三角函数的基本关系将弦化切,再代入计算可得;【小问1详解】解:由,有,有,整理为,有,解得或.又由,有,可得;【小问2详解】解:.21、证明见解析【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论