2026届贵州省铜仁市石阡县民族中学数学高二上期末综合测试模拟试题含解析_第1页
2026届贵州省铜仁市石阡县民族中学数学高二上期末综合测试模拟试题含解析_第2页
2026届贵州省铜仁市石阡县民族中学数学高二上期末综合测试模拟试题含解析_第3页
2026届贵州省铜仁市石阡县民族中学数学高二上期末综合测试模拟试题含解析_第4页
2026届贵州省铜仁市石阡县民族中学数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省铜仁市石阡县民族中学数学高二上期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程为()A. B.C. D.2.已知a,b为不相等实数,记,则M与N的大小关系为()A. B.C. D.不确定3.双曲线的焦距是()A.4 B.C.8 D.4.瑞士数学家欧拉1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是()A. B.C. D.5.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为6.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.57.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.8.用反证法证明“若a,b∈R,,则a,b不全为0”时,假设正确的是()A.a,b中只有一个为0 B.a,b至少一个不为0C.a,b至少有一个为0 D.a,b全为09.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.10.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.1811.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.12.以,为焦点,且经过点的椭圆的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,直线是曲线在点处的切线,则__________.14.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|的最小值是_________15.已知为数列{}前n项和,若,且),则=___16.已知点,则线段的垂直平分线的一般式方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.18.(12分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值19.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围20.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)21.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率22.(10分)设函数(1)若在处取得极值,求a的值;(2)若在上单调递减,求a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是,即,故选B【点睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题2、A【解析】利用作差法即可比较M与N的大小﹒【详解】因为,又,所以,即故选:A3、C【解析】根据,先求半焦距,再求焦距即可.【详解】解:由题意可得,,∴,故选:C【点睛】考查求双曲线的焦距,基础题.4、C【解析】设出点C坐标,求出的重心并代入欧拉线方程,验证并排除部分选项,余下选项再由外心、垂心验证判断作答.【详解】设顶点的坐标为,则的重心坐标为,依题意,,整理得:,对于A,当时,,不满足题意,排除A;对于D,当时,,不满足题意,排除D;对于B,当时,,对于C,当时,,直线AB的斜率,线段AB中点,线段AB中垂线方程:,即,由解得:,于是得的外心,若点,则直线BC的斜率,线段BC中点,该点与点M确定直线斜率为,显然,即点M不在线段BC的中垂线上,不满足题意,排除B;若点,则直线BC的斜率,线段BC中点,线段BC中垂线方程为:,即,由解得,即点为的外心,并且在直线上,边AB上的高所在直线:,即,边BC上的高所在直线:,即,由解得:,则的垂心,此时有,即的垂心在直线上,选项C满足题意.故选:C【点睛】结论点睛:的三顶点,则的重心为.5、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础6、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C7、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.8、D【解析】把要证的结论否定之后,即得所求的反设【详解】由于“a,b不全为0”的否定为:“a,b全为0”,所以假设正确的是a,b全为0.故选:D9、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B10、C【解析】先求出公差,再利用公式可求总重量.【详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.11、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C12、B【解析】根据焦点在x轴上,c=1,且过点,用排除法可得.也可待定系数法求解,或根据椭圆定义求2a可得.【详解】因为焦点在x轴上,所以C不正确;又因为c=1,故排除D;将代入得,故A错误,所以选B.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用直线所过点求得直线的斜率,从而求得.【详解】由图象可知直线过,所以直线的斜率为,所以.故答案为:14、##【解析】由抛物线的定义可得,所以的最小值转化为求的最小值,由图可知的最小值为,从而可求得答案【详解】抛物线y2=2x焦点,准线为,由抛物线的定义可得,所以,因为,,所以,所以,当且仅当三点共线且在线段上时,取得最小值,所以的最小值为,故答案为:15、2【解析】第一步找出数列周期,第二步利用周期性求和.【详解】,,,,,,可知数列{}是周期为4的周期数列,所以故答案为:2.16、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设正项的等比数列的公比为,根据题意列出方程组,求得的值,即可求得数列的通项公式;(2)由,结合乘公比错位相减求和,即可求解.小问1详解】解:设正项的等比数列的公比为,显然不为1,因为等比数列前4项和为且,可得,解得,所以数列的通项公式为.【小问2详解】解:由,所以,可得,两式相减得,所以.18、(1)(2)【解析】(1)由题意,求出的值,然后根据导数的几何意义即可求解;(2)根据导数与函数单调性关系,判断函数在区间上的单调性,从而即可求解.【小问1详解】解:由题意,,因为,所以,解得,所以,,因为,,所以曲线在点处的切线方程为,即;【小问2详解】解:因为,,所以时,,时,,所以在上单调递减,在上单调递增,所以,即函数在区间上的最小值为.19、(1)(2)【解析】(1)移项,两边平方即可获解;(2)利用绝对值不等式即可.【小问1详解】即即,即即即或所以不等式的解集为【小问2详解】由题知对恒成立因为.所以,解得即或,所以实数的取值范为20、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.21、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论