版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
激光雷达工作原理及应用WorkingPrincipleandApplicationofLiDAR暴雨大雾里的安全守望者SafetyWatcherinHeavyRainandFog激光雷达是如何实现三维感知的?不同类型的激光雷达有什么区别?它的核心技术参数又有哪些?HowdoesLiDARachieve3Dperception?WhatarethedifferencesbetweendifferenttypesofLiDARs?Whatarethecoretechnicalparameters?PART01分类方式全景速览PanoramicQuickViewbyClassificationMethod激光雷达的角色与定义RoleandDefinitionofLiDAR主动激光探测Activelaserdetection激光雷达通过发射激光并测量往返时间、相位或频率,计算目标距离、速度、角度,生成三维点云,实现高精度三维感知。LiDARemitslaserlightandmeasurestheround-triptime,phaseorfrequency,calculatesthetargetdistance,speedandangle,generatesa3Dpointcloud,andrealizeshigh-precision3Dperception.全天候优势All-weatheradvantages不受光照和天气影响,白天黑夜、雨雪雾霾均能稳定工作,为自动驾驶系统提供持续可靠的环境建模数据。LiDARisnotaffectedbylightandweather,andcanworkstablydayandnightinweatherofrain,snowandhaze,providingcontinuousandreliableenvironmentalmodelingdatafortheautonomousdrivingsystem.L3+核心传感器L3+coresensor作为L3及以上自动驾驶的关键输入源,激光雷达直接决定车辆对复杂环境的理解精度,是“自动驾驶的三维之眼”。AsakeyinputsourceforL3andaboveautonomousdriving,LiDARdirectlydeterminesthevehicle'sprecisioninunderstandingthecomplexenvironments,anditisthe"3Deyesforautonomousdriving"..按扫描方式划分的三大阵营ThreeMajorCategoriesByScanningMethod1机械式LiDARMechanicalLiDAR360°旋转扫描,点云均匀,测距远,但体积大、成本高,适合早期测试车。Itadopts360°rotationscanning.Itfeaturesuniformpointcloudandlongranging,buthasthedisadvantagesoflargesizeandhighcost.Itissuitableforearlytestvehicles.2固态LiDARSolid-stateLiDAR无旋转部件,芯片级扫描,体积小、可靠性高,成本持续下降,是乘用车量产主流。Ithasnrotatingparts,andfeatureschip-levelscanning,smallsize,highreliability,andcontinuouscostreduction.Itisthemainstreamofpassengercarmassproduction.3混合固态LiDARHybridsolid-stateLiDAR小角度旋转+芯片扫描,兼顾视场与成本,已在中端智能网联汽车规模落地。Itfeaturessmall-anglerotation+chipscanning,andconsidersboththefieldofviewandthecost.Ithasalreadybeenimplementedonalargescaleinmid-rangeintelligentconnectedvehicles.距离与波长的双维细分ClassificationbyDistanceandWavelength短距激光雷达
Short-rangeLiDAR中距激光雷达
Mid-rangeLiDAR长距激光雷达
Long-rangeLiDAR探测距离
Detectionrange0.5-50米
0.5–50m50-150米
50–150m150-300米
150–300m适配范围
Application泊车
Parking覆盖城市场景
Coveringurbanscenarios服务高速提前预警
Earlywarningonexpressways距离分段策略Classificationbydistance距离与波长的双维细分ClassificationbyDistanceandWavelength分类
Category优势
Advantages劣势
Disadvantages905nm激光雷达
905nmLiDAR技术成熟、成本低
Maturetechnologyandlowcost探测距离和抗干扰能力有限
Limiteddetectionrangeandanti-interferenceability1550nm激光雷达
1,550nmLiDAR探测距离远、抗干扰能力强
Longdetectiondistanceandstronganti-interferenceability技术门槛高、成本较高
Hightechnicalthresholdandhighcost波长选型权衡ClassificationbywavelengthPART02核心技术参数拆解DetailedDescriptionofCoreTechnicalParameters探测距离与点云密度DetectionRangeandPointCloudDensity探测距离Detectionrange点云密度Pointclouddensity高速场景需≥250米提前预警,距离越远,留给决策与制动的时间越充裕,直接关联功能安全。High-speedscenariosrequireanadvancewarningforadistance≥250m.Afartherdistanceleavesmoretimefordecision-makingandbraking.Detectionrangeisdirectlyrelatedtofunctionalsafety.百万点/秒起步,测试车可达千万级,密度越高,模型越精细,但对算力与存储提出指数级需求。Thedensityisatleastonemillionpointspersecond,andthatofthetestvehiclecanreachtensofmillionspointspersecond.Ahigherdensityleadstoamorerefinedmodel,butplacesexponentialdemandsoncomputingpowerandstorage.扫描频率与测角范围ScanningFrequencyandAngleMeasurementRange激光雷达扫描
LiDARscanning扫描频率Scanningfrequency测角范围Anglemeasurementrange10-20Hz为主流,频率越高,对切入车辆捕捉越及时,减少漏检风险。Themainstreamfrequencyis10–20Hz.Ahigherfrequencyleadstoamoretimelycaptureofacut-invehicleandreducestheriskofmisseddetection.激光雷达能探测的角度范围,水平测角范围通常为360°或120°-150°,垂直测角范围为±15°-±30°,测角范围越广,盲区越小。TheanglerangethattheLiDARcandetectisusually360°or120°to150°horizontallyand±15°to±30°vertically.Awideranglemeasurementrangeleadstoasmallerblindspot;测距精度和抗干扰能力RangingprecisionandAnti-interferenceAbility测距精度Rangingprecision测量目标距离的误差范围,主流激光雷达的测距精度为±2cm-±5cm,精度越高,对近距离障碍物的判断越准确。Fortheerrorrangeinmeasuringtargetdistance,therangingprecisionofmainstreamLiDARis±2cmto±5cm.Ahigherprecisionleadstoamoreaccuratejudgmentofshort-rangeobstacles.抗干扰能力Anti-interferenceability指在强光、雨天、大雾等环境下的工作稳定性,1550nm激光雷达的抗干扰能力优于905nm,能在恶劣天气下保持性能稳定。Itreferstotheworkingstabilityinstronglight,rainydays,heavyfogandotherenvironments.Theanti-interferenceabilityof1,550nmLiDARisbetterthanthatof905nm,whichcanmaintainstableperformanceinbadweather.PART03典型应用场景TypicalApplicationScenarios自动驾驶环境建模核心CoreofAutonomousDrivingEnvironmentModeling激光雷达点云LiDARPointCloud自动驾驶环境建模Autonomousdrivingenvironmentmodeling激光雷达通过生成高精度三维点云地图,精准识别车道线、交通标志、行人、车辆、护栏等目标的位置和形状,为决策系统提供“环境全景图”。LiDARgenerateshigh-precision3Dpointcloudmapstoaccuratelyidentifythelocationandshapeoflanelines,trafficsigns,pedestrians,vehicles,guardrailsandothertargets,providingan"environmentalpanorama"forthedecision-makingsystem.自动驾驶环境建模核心CoreofAutonomousDrivingEnvironmentModeling激光雷达点云LiDARPointCloud高级辅助驾驶系统升级Advanceddriverassistantsystemupgrade为L2+级辅助驾驶系统提供更精准的感知数据,如增强型自适应巡航控制系统的跟车距离控制、车道保持辅助系统的车道线识别精度,减少因视觉传感器或毫米波雷达误判导致的故障。ItprovidesmoreaccurateperceptiondataforL2+driverassistantsystems,suchasthefollowingdistancecontrolofenhancedadaptivecruisecontrolsystemandthelanelinerecognitionprecisionoflanekeepingassistsystem,soastoreducefaultscausedbymisjudgmentofvisionsensorsormillimeterwaveradars.自动驾驶环境建模核心CoreofAutonomousDrivingEnvironmentModeling激光雷达点云LiDARPointCloud自动泊车与低速行驶Automaticparkingandlow-speeddriving短距激光雷达用于车辆周围环境探测,精准测量车位尺寸、周围障碍物距离,实现全自动泊车(ValetParking),避免低速行驶时的碰撞风险。Short-rangeLiDARisusedtodetectthesurroundingenvironmentofvehicles,accuratelymeasurethesizeofparkingspacesandthedistancefromsurroundingobstacles,realizefullyautomaticparking(ValetParking),andavoidcollisionrisksduringlow-speeddriving.ADAS升级与特殊场景适配ADASUpgradeandAdaptationtoSpecialScenarios特殊场景适配Specialscenarioadaptation在暴雨、大雾、夜间等恶劣环境下,激光雷达不受光照和能见度影响,能弥补视觉传感器的不足,确保自动驾驶系统持续稳定工作。Inharshenvironmentssuchasheavyrain,fogandnight,LiDARisnotaffectedbylightandvisibility.Itcanmakeupfortheshortcomingsofvisionsensorsandensurethecontinuousandstableoperationoftheautonomousdrivingsystem.车路协同应用Vehicle-infrastructurecooperation除了车载激光雷达,路侧激光雷达也广泛应用于车路协同系统,通过路侧部署的激光雷达监测道路全局交通状况,为过往车辆提供实时路况信息,提升交通安全性。Inadditiontovehicle-borneLiDAR,roadsideLiDARisalsowidelyusedinvehicle-infrastructurecooperationsystem.TheLiDARdeployedontheroadsidemonitorstheglobaltrafficconditionsoftheroad,providesreal-timeroadconditioninformationforpassingvehicles,andimprovestrafficsafety.三维之眼未来融合路3DEyesforFutureIntegration分类速记Classification机械、固态、混合固态三大扫描方式,按距离与波长再细分,形成多维选型矩阵。Thethreemajorscanningmethods,namelymechanical,solid-stateandhybridsoli
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5G技术在远程医疗中的应用
- 疾病诊疗流程优化汇报
- 护理专业实习生临床实践能力培养策略
- 恶性肿瘤护理管理与护理心理
- 医疗大数据在临床应用的研究
- 医疗机构医疗废物分类与回收礼仪
- 财政预决算报告课件
- 医疗保险理赔流程与案例分析
- 医生问诊技巧与医患关系
- 医疗护理岗位礼仪与沟通技巧
- 中国低空经济发展指数报告(2025版)
- 10.2 常见的酸和碱(课件)-2024-2025学年九年级化学人教版下册
- 2024电力智能录波器技术规范
- 《中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)》解读课件
- 暨南大学《法理学》2023-2024学年第一学期期末试卷
- 小学课后服务经费管理方案
- 道路绿化养护道路绿化养护方案
- DL-T 5117-2021水下不分散混凝土试验规程-PDF解密
- 宝马购车合同
- 神经内科品管圈成果汇报-提高脑卒中偏瘫患者早期自我肢体功能锻炼规范执行率
- 缺血性脑卒中静脉溶栓护理
评论
0/150
提交评论