版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆门市2026届数学高二上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A. B.C. D.2.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件3.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,4.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.5.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.6.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.7.在棱长为4的正方体中,为的中点,点P在正方体各棱及表面上运动且满足,则点P轨迹围成的图形的面积为()A. B.C. D.8.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.9.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A. B.C. D.10.复数的共轭复数是A. B.C. D.11.直线与圆相交与A,B两点,则AB的长等于()A3 B.4C.6 D.112.已知公差不为0的等差数列中,,且,,成等比数列,则其前项和取得最大值时,的值为()A.12 B.13C.12或13 D.13或14二、填空题:本题共4小题,每小题5分,共20分。13.i为虚数单位,复数______14.曲线在处的切线与坐标轴围成的三角形面积为___________.15.已知函数,则_________16.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).参考数据:65091.552.51478.630.5151546.5表中.(1)根据散点图判断与,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量,则有,;③取.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小(2)若,,求b.19.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;20.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和21.(12分)已知抛物线的焦点到准线的距离为,过点的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.22.(10分)已知中,内角的对边分别为,且满足.(1)求的值;(2)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:2、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.3、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.4、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.5、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.6、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B7、A【解析】构造辅助线,找到点P轨迹围成的图形为长方形,从而求出面积.【详解】取的中点E,的中点F,连接BE,EF,AF,则由于为的中点,可得,所以∠CBE=∠ECN,从而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因为BEEF=E,所以CN⊥平面ABEF,所以点P轨迹围成的图形为矩形ABEF,又,所以矩形ABEF面积为.故选:A8、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.9、D【解析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线的方程【详解】由题可知,抛物线焦点为,所以直线的方程为,即直线的斜率为,又双曲线的渐近线的方程为,所以,,因为,解得故选:【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题10、B【解析】因,故其共轭复数.应选B.考点:复数的概念及运算.11、C【解析】根据弦长公式即可求出【详解】因为圆心到直线的距离为,所以AB的长等于故选:C12、C【解析】设等差数列的公差为q,根据,,成等比数列,利用等比中项求得公差,再由等差数列前n项和公式求解.【详解】设等差数列的公差为q,因为,且,,成等比数列,所以,解得,所以,所以当12或13时,取得最大值,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.14、【解析】先求导数,得出切线斜率,写出切线方程,然后可求三角形的面积.【详解】,当时,,所以切线方程为,即;令可得,令可得;所以切线与坐标轴围成的三角形面积为.故答案为:.15、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】,,因此,.故答案为:.16、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);810公斤;(3).【解析】(1)根据散点图的变化趋势,结合给定模型的性质直接判断适合的模型即可.(2)将(1)中模型取对得,结合题设及表格数据求及参数,进而可得参数c,即可确定回归方程,进而估计时粮食亩产量y的值.(3)由题设知,结合特殊区间的概率值及正态分布的对称性求即可.【小问1详解】根据散点图,呈现非线性的变化趋势,故更适合作为关于的回归方程类型.【小问2详解】对两边取对数,得,即,由表中数据得:,,,则,∴关于的回归方程为,当时,,∴当化肥施用量为27公斤时,粮食亩产量约为810公斤.小问3详解】依题意,,则有,∴,则,∴这种化肥的有效率超过58%的概率约为.18、(1);(2)【解析】(1)由正弦定理,可得,进而可求出和角;(2)利用余弦定理,可得,即可求出.【详解】(1)由,得,因为,所以,又因为B为锐角,所以(2)由余弦定理,可得,解得【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查学生的计算求解能力,属于基础题.19、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.20、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以21、(1);(2)或或.【解析】(1)根据给定条件结合p的几何意义,直接求出p写出方程作答.(2)直线l的斜率存在设出其方程,再与抛物线C的方程联立,再讨论计算,l斜率不存在时验证作答.【小问1详解】因抛物线的焦点到准线的距离为,于是得,所以抛物线的方程为.【小问2详解】当直线的斜率存在时,设直线为,由消去y并整理得:,当时,,点是直线与抛物线唯一公共点,因此,,直线方程为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年华坪县择优招聘云南省职业教育省级公费师范毕业生备考题库及答案详解1套
- 2026年弥勒市市级行政事业单位招聘聘用制工作人员备考题库(截止1月5日上午10:00)完整参考答案详解
- 2026年安阳市殷都区正一中学招聘11人备考题库及完整答案详解1套
- 2026年中化学国际工程有限公司招聘备考题库及完整答案详解1套
- 2026年儿外科招聘备考题库参考答案详解
- 2026年大连理工大学化工学院张文锐团队科研助理招聘备考题库带答案详解
- 2026年安康高新区社区卫生服务中心招聘24人备考题库及答案详解参考
- 2026年度郑州市市直机关公开遴选公务员备考题库及1套完整答案详解
- 2026年南京机电职业技术学院公开招聘高层次人才备考题库及答案详解参考
- 2026年浙江科技学院单招职业技能考试题库附答案
- 2332《高等数学基础》国家开放大学期末考试题库
- 喉癌患者吞咽功能康复护理
- DB32∕T 5167-2025 超低能耗建筑技术规程
- 地球小博士知识竞赛练习试题及答案
- 殡仪馆鲜花采购投标方案
- 中小学生意外伤害防范
- 动静脉瘘课件
- 企业ESG审计体系构建-洞察及研究
- 2025年信用报告征信报告详版个人版模板样板(可编辑)
- 药品生产培训课件
- 《先张法预应力混凝土实心方桩技术规程》
评论
0/150
提交评论