重庆市第一中学2026届高一上数学期末学业质量监测试题含解析_第1页
重庆市第一中学2026届高一上数学期末学业质量监测试题含解析_第2页
重庆市第一中学2026届高一上数学期末学业质量监测试题含解析_第3页
重庆市第一中学2026届高一上数学期末学业质量监测试题含解析_第4页
重庆市第一中学2026届高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第一中学2026届高一上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若a,b都为正实数且,则的最大值是()A. B.C. D.2.已知偶函数在上单调递增,则对实数、,“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.命题:“,”的否定是()A., B.,C., D.,4.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.5.已知函数,的值域为,则实数的取值范围是A. B.C. D.6.已知为第二象限角,则的值是()A.3 B.C.1 D.7.已知函数则等于()A.-2 B.0C.1 D.28.若向量,则下列结论正确的是A. B..C. D.9.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.510.若,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)12.已知半径为3的扇形面积为,则这个扇形的圆心角为________13.直线,当变动时,所有直线都通过定点______.14.无论实数k取何值,直线kx-y+2+2k=0恒过定点__15.已知且,函数的图象恒经过定点,正数、满足,则的最小值为____________.16.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式;(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?18.已知求的值;求的值.19.已知函数,设.(1)证明:若,则;(2)若,满足,求实数m的范围.20.已知,求值;已知,求的值21.已知函数.(Ⅰ)求的单调区间;(Ⅱ)求函数的对称轴和对称中心.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D2、C【解析】直接利用充分条件和必要条件的定义判断.【详解】因为偶函数在上单调递增,若,则,而等价于,故充分必要;故选:C3、C【解析】根据含有一个量词的命题的否定形式,全称命题的否定是特称命题,可得答案.【详解】命题:“,”是全称命题,它的否定是特称命题:,,故选:C4、C【解析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.5、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.6、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.7、A【解析】根据分段函数,根据分段函数将最终转化为求【详解】根据分段函数可知:故选:A8、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行9、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.10、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.12、【解析】由扇形的面积公式直接求解.【详解】由扇形面积公式,可得圆心角,故答案为:.【点睛】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.13、(3,1)【解析】将直线方程变形为,得到,解出,即可得到定点坐标.【详解】由,得,对于任意,式子恒成立,则有,解出,故答案为:(3,1).【点睛】本题考查直线过定点问题,直线一定过两直线、的交点.14、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:15、9【解析】由指数函数的性质可得函数的图象恒经过定点,进而可得,然后利用基本不等式中“1”的妙用即可求解.【详解】解:因为函数的图象恒经过定点,所以,又、为正数,所以,当且仅当,即时等号成立,所以的最小值为9.故答案为:9.16、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)24300【解析】:(1)由,可得,.(2)由题,解得:,故其耗氧量至多需要24300个单位.试题解析:(1)由题意,得,解得:,.∴游速与其耗氧量单位数之间的函数解析式为.(2)由题意,有,即,∴由对数函数的单调性,有,解得:,∴当一条鲑鱼的游速不高于时,其耗氧量至多需要24300个单位.点晴:解决函数模型应用的解答题18、(1);(2)【解析】(1)作的平方可得,则,由的范围求解即可;(2)先利用降幂公式和切弦互化进行化简,得原式,将与代入求解即可【详解】(1)由题,,则,因为又,则,所以因此,(2)由题,由(1)可,代入可得原式【点睛】本题考查同角的平方关系式及完全平方公式的应用,考查降幂公式,考查切弦互化,考查运算能力19、(1)证明见解析(2)【解析】(1)先判断为偶函数,再由单调性的定义可得函数在单调递增,从而当时,有,进而可得结论,(2)将不等式转化为,再由的奇偶性和单调性可得,所以将问题转化为,换元后变形利用基本不等式可求得结果【小问1详解】证明:因,所以函数为偶函数.任取,不妨设,则当时,,所以,即,由单调性定义知,函数在单调递增,所以,当时,,即,即【小问2详解】由整理得,由(1)知,在上单调递增,且为偶函数,易证在上单调递减,因为,所以,故,即,由题意知,,即令,因为,由单调性可知,,由基本不等式得,,当且仅当,即时,等号成立.即,故.【点睛】关键点点睛:此题考查函数奇偶性的判断,函数单调性的证明,考查不等式恒成立问题,解题的关键是将问题转化为,然后分离参数得,换元整理后利用基本不等式可求得结果,考查数学转化思想和计算能力,属于中档题20、(1)(2)【解析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已知角与待求角互余,可直接利用诱导公式求值【详解】解:已知,所以:,所以:,,,由于,所以:【点睛】本题考查同角间的三角函数关系与诱导公式,解题时需考虑已知角与未知角之间的关系,以寻求运用恰当的公式进行化简变形与求值21、(1)单调递增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论