版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区托克逊县第二中学2026届高二数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A=()A. B.C.或 D.2.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.33.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.74.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.5.如图,在三棱锥中,,,,点在平面内,且,设异面直线与所成角为,则的最大值为()A. B.C. D.6.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.7.如图,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆的上半部分于点,F是椭圆C的右焦点,则()A.20 B.C.36 D.308.原点到直线的距离的最大值为()A. B.C. D.9.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内10.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.111.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.612.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.14.已知抛物线的焦点为,点为抛物线上一点,以为圆心的圆经过原点,且与抛物线的准线相切,切点为,线段交抛物线于点,则___________.15.设点是双曲线上的一点,、分别是双曲线的左、右焦点,已知,且,则双曲线的离心率为________16.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的焦距为,点在C上(1)求C的方程;(2)过点的直线与C交于M,N两点,点R是直线:上任意一点,设直线RM,RQ,RN的斜率分别为,,,若,,成等差数列,求的方程.18.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)试讨论函数的单调性.19.(12分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求20.(12分)我们知道,装同样体积的液体容器中,如果容器的高度一样,那么侧面所需的材料就以圆柱形的容器最省.所以汽油桶等装液体的容器大都是圆柱形的,某卧式油罐如图1所示,它垂直于轴的截面如图2所示,已知截面圆的半径是1米,弧的长为米表示劣弧与弦所围成阴影部分的面积.(1)请写出函数表达式;(2)用求导的方法证明.21.(12分)已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.22.(10分)设函数(1)若在处取得极值,求a的值;(2)若在上单调递减,求a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.2、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.3、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.4、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B5、D【解析】设线段的中点为,连接,过点在平面内作,垂足为点,证明出平面,然后以点为坐标原点,、、分别为、、轴的正方向建立空间直角坐标系,设,其中,且,求出的最大值,利用空间向量法可求得的最大值.【详解】设线段的中点为,连接,,为的中点,则,,则,,同理可得,,,平面,过点在平面内作,垂足为点,因为,所以,为等边三角形,故为的中点,平面,平面,则,,,平面,以点为坐标原点,、、分别为、、轴的正方向建立如下图所示的空间直角坐标系,因为是边长为的等边三角形,为的中点,则,则、、、,由于点在平面内,可设,其中,且,从而,因为,则,所以,,故当时,有最大值,即,故,即有最大值,所以,.故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.6、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.7、D【解析】由椭圆的对称性可知,,代入计算可得答案.【详解】设椭圆左焦点为,连接由椭圆的对称性可知,,所以.故选:D.8、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.9、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D10、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D11、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.12、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由“狄利克雷函数”解析式,先求出,再根据指数函数的解析式求即可.【详解】由题设,,则.故答案:114、【解析】分析可知为等腰三角形,可得出,将点的坐标代入抛物线的方程,可求得的值,可得出抛物线的方程以及点的坐标,求出点的坐标,设点,其中,分析可知,利用平面向量共线的坐标表示求出的值,进而可求得结果.【详解】由抛物线的定义结合已知条件可知,则为等腰三角形,易知抛物线的焦点为,故,即点,因为点在抛物线上,则,解得,所以,抛物线的方程为,故点、,因为以点为圆心,为半径的圆与直线相切于点,则,设点,其中,,,由题意可知,则,整理可得,解得,因此,.故答案为:.15、【解析】由双曲线的定义可求得、,利用勾股定理可得出关于、的齐次等式,进而可求得该双曲线的离心率.【详解】由双曲线定义可得,故,由勾股定理可得,即,可得,因此,该双曲线的离心率为.故答案为:.16、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据椭圆的焦距为,点在C上,由求解;(2)设,,,的斜率不存在时,则的方程为,与椭圆的方程联立求得M,N的坐标,由,,成等差数列求解;的斜率存在时,设的方程为,与椭圆的方程联立,然后由,,成等差数列,结合韦达定理求解;【小问1详解】解:由题意得,解得,,所以C的方程为.【小问2详解】设,,,当的斜率不存在时,则的方程为,将代入,得.因为,,成等差数列,所以,即,显然当时,方程恒成立.当的斜率存在时,设的方程为,联立得,则,.,.因为,,成等差数列,所以,即恒成立.则,解得.综上所述,的方程为.18、(1)(2)详见解析.【解析】(1)由,求导,得到,写出切线方程;(2)求导,再分,,讨论求解.【小问1详解】解:因为,所以,则,所以,所以曲线在点处的切线方程是,即;【小问2详解】因为,所以,当时,成立,则在上递减;当时,令,得,当时,,当时,,所以在上递减,在上递增;综上:当时,在上递减;当时,在上递减,在上递增;19、(1)(2)9【解析】(1)根据题意列出关于等比数列首项、公比的方程组即可解决;(2)利用等比数列的前项和的公式,解方程即可解决.【小问1详解】设各项均为正数的等比数列首项为,公比为则有,解之得则等比数列的通项公式.【小问2详解】由,可得20、(1),(2)证明见解析【解析】(1)由弧长公式得,根据即可求解;(2)利用导数判断出在上单调递增,即可证明.【小问1详解】由弧长公式得,于是,【小问2详解】cos,显然在上单调递增,于是.21、(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年船舶与海洋工程装备智能化项目公司成立分析报告
- 2026年部门保密自查报告范文
- 混凝土坍落度检测方案
- 2026届云南省腾冲市第一中学高一数学第一学期期末调研试题含解析
- 2026年公安部第一研究所公开招聘预报名公安部第一研究所备考题库及参考答案详解
- 2026年国家电投集团内蒙古白音华煤电有限公司铝电分公司自备电厂招聘备考题库完整答案详解
- 2026年心血管内科科研助理招聘备考题库及答案详解参考
- 2026年广州市番禺区市桥街中心幼儿园公开招聘编外教职员的备考题库及一套完整答案详解
- 辽宁省大连市旅顺口区第三高级中学2026届英语高三上期末考试模拟试题含解析
- 2026年大连商品交易所招聘备考题库及一套完整答案详解
- 国家开放大学电大本科《流通概论》复习题库
- 机关档案汇编制度
- 2025年下半年四川成都温江兴蓉西城市运营集团有限公司第二次招聘人力资源部副部长等岗位5人参考考试题库及答案解析
- 2026福建厦门市校园招聘中小学幼儿园中职学校教师346人笔试参考题库及答案解析
- 沈阳开放大学招聘考试题库2024
- 16 ADCampus解决方案微分段技术白皮书1.0
- 中国古代传统节日与民俗文化
- 高校申报新专业所需材料汇总
- (机构动态仿真设计)adams
- NB-T 31053-2021 风电机组电气仿真模型验证规程
- GB/T 1048-2019管道元件公称压力的定义和选用
评论
0/150
提交评论