版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届青海省西宁二十一中高二数学第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线:的左、右焦点分别为、,过的直线与y轴交于点A、与双曲线右支交于点B,若为等边三角形,则双曲线C的离心率为()A. B.C.2 D.2.函数的值域为()A. B.C. D.3.直线(t为参数)被圆所截得的弦长为()A. B.C. D.4.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.25.已知命题P:,,则命题P的否定为()A., B.,C., D.,6.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次从高变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,问这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.20C.18 D.167.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A192
里 B.96
里C.48
里 D.24
里9.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.10.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.11.函数的图象在点处的切线的倾斜角为()A. B.0C. D.112.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.写出一个同时具有性质①②的函数___________.(不是常值函数),①为偶函数;②.14.已知点,点是直线上的动点,则的最小值是_____________15.已知函数,则函数在区间上的平均变化率为___________.16.若在数列的每相邻两项之间插入此两项的和,可形成新的数列,再把所得数列按照同样的方法不断进行构造,又可以得到新的数列.现将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;依次构造,第次得到数列1,,,,…,,2;记则______,设数列的前n项和为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求18.(12分)已知椭圆的左、右焦点分别为,,点在椭圆C上,且满足(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同的两点M,N,且(O为坐标原点).证明:总存在一个确定的圆与直线l相切,并求该圆的方程19.(12分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积20.(12分)某电脑公司为调查旗下A品牌电脑的使用情况,随机抽取200名用户,根据不同年龄段(单位:岁)统计如下表:分组频率/组距0.010.040.070.060.02(1)根据上表,试估计样本的中位数、平均数(同一组数据以该组区间的中点值为代表,结果精确到0.1);(2)按照年龄段从内的用户中进行分层抽样,抽取6人,再从中随机选取2人赠送小礼品,求恰有1人在内的概率21.(12分)已知双曲线()的一个焦点是,离心率.(1)求双曲线的方程;(2)若斜率为的直线与双曲线交于两个不同的点,线段的垂直平分线与两坐标轴围成的三角形的面积为,求直线的方程22.(10分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,从而即可求解.【详解】解:由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以双曲线C的离心率,故选:B.2、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C3、C【解析】求得直线普通方程以及圆的直角坐标方程,利用弦长公式即可求得结果.【详解】因为直线的参数方程为:(t为参数),故其普通方程为,又,根据,故可得,其表示圆心为,半径的圆,则圆心到直线的距离,则该直线截圆所得弦长为.故选:C.4、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.5、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B6、D【解析】根据题意,建立等差数列模型,结合等差数列公式求解即可.【详解】解:根据题意,设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:D.7、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D8、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B9、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.10、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D11、A【解析】求出导函数,计算得切线斜率,由斜率求得倾斜角【详解】,设倾斜角为,则,,故选:A12、A【解析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】利用导函数周期和奇偶性构造导函数,再由导函数构造原函数列举即可.【详解】由知函数的周期为,则,同时满足为偶函数,所以满足条件.故答案为:(答案不唯一).14、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.15、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:316、①.81②.【解析】根据数列的构造写出前面几次得到的新数列,寻找规律,构造等比数列,求出通项公式,再进行求和.【详解】第1次得到数列1,3,2,此时;第2次得到数列1,4,3,5,2,此时;第3次得到数列1,5,4,7,3,8,5,7,2,此时;第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时,故81,且故,又,所以数列是以为首项,公比为3的等比数列,所以,故,所以故答案为:81,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)4【解析】(1)根据,即可将直线的极坐标方程转化为普通方程;消参数,即可求出曲线的普通方程;(2)由题意易知,求出直线的参数方程,将其代入曲线的普通方程,利用一元二次方程根和系数关系式的应用,即可求出结果【小问1详解】解:直线极坐标方程为,即,又,可得的普通方程为,曲线的参数方程是(为参数,消参数,所以曲线的普通方程为【小问2详解】解:在中令得,,倾斜角,的参数方程可设为,即(为参数),将其代入,得,,设,对应的参数分别为,,则,,,异号,.18、(1);(2)理由见解析,圆的方程为.【解析】(1)根据给定条件可得,结合勾股定理、椭圆定义求出a,b得解.(2)联立直线l与椭圆C的方程,利用给定条件求出k,m的关系,再求出原点O到直线l的距离即可推理作答.【小问1详解】因,则,点在椭圆C上,则椭圆C的半焦距,,,因此,,解得,,所以椭圆C的标准方程是:.【小问2详解】由消去y并整理得:,依题意,,设,,因,则,于是得,此时,,则原点O到直线l的距离,所以,存在以原点O为圆心,为半径的圆与直线l相切,此圆的方程为.【点睛】思路点睛:涉及动直线与圆锥曲线相交满足某个条件问题,可设直线方程为,再与圆锥曲线方程联立结合已知条件探求k,m的关系,然后推理求解.19、(1);(2).【解析】(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.试题解析:(1)∵c•cosB+(b-2a)cosC=0,由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面积S=absinC=.20、(1)中位数为38.6,平均数为38.5岁;(2).【解析】(1)由中位数分数据两边的频率相等,列方程求中位数;根据各组数据的中点数乘以频率即可得平均数;(2)由分层抽样确定从中各抽4人、2人,列举出随机选取2人的所有组合,得到恰有1人在的组合数,即可求概率.【详解】(1)中位数在中,设为,则,解得.平均数为岁.所以样本的中位数约为38.6,平均数为38.5岁.(2)根据分层抽样法,其中位于中的有4人,记为,,,;位于中的有2人,记为,.从6人中抽取2人,有,,,,,,,,,,,,,,,共15种情况,恰有1人在内的有,,,,,,,,共8种情况,∴恰有1人在内的概率为.【点睛】关键点点睛:由中位数的性质以及平均数与各组数据中点值、频率的关系求中位数、平均数;根据分层抽样确定各组选取人数,利用列举法求概率.21、(1)(2)【解析】(1)由已知及离心率公式直接计算;(2)设直线方程为,联立方程组可得中点及中垂线方程,根据三角形面积可得的值.【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 4802.1-2008纺织品 织物起毛起球性能的测定 第1部分:圆轨迹法》专题研究报告
- 《GBT 22401-2008摄影 加工用化学品 无水焦亚硫酸钠》专题研究报告
- 《FZT 52044-2017聚酰胺酯短纤维》专题研究报告-专家深度与行业前瞻
- 道路交通标志安全课课件
- 2026年江西高考政治真题试卷
- 道法趣味知识竞赛课件
- 2026年甘肃武威市高职单招语文考试题库(附含答案)
- 2025中国肺移植生物样本库构建临床指南(2025年版)课件
- 返岗安全知识培训课件
- 达利员工培训计划
- 清华大学教师教学档案袋制度
- 公租房完整租赁合同范本
- 东南大学附属中大医院2026年招聘备考题库及答案详解参考
- GB/T 3098.5-2025紧固件机械性能第5部分:自攻螺钉
- 孟州市浩轩塑业有限公司年产200吨塑料包装袋项目环评报告
- 卫生院消防安全演练方案篇
- 电焊机操作JSA分析表
- 落地式钢管脚手架工程搭拆施工方案
- 养老院健康档案模板
- 新竞争环境下的企业发展战略(培训讲座课件PPT)
- 电力拖动自动控制系统-运动控制系统(第5版)习题答案
评论
0/150
提交评论