陕西省合阳县黑池中学2026届数学高一上期末教学质量检测模拟试题含解析_第1页
陕西省合阳县黑池中学2026届数学高一上期末教学质量检测模拟试题含解析_第2页
陕西省合阳县黑池中学2026届数学高一上期末教学质量检测模拟试题含解析_第3页
陕西省合阳县黑池中学2026届数学高一上期末教学质量检测模拟试题含解析_第4页
陕西省合阳县黑池中学2026届数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省合阳县黑池中学2026届数学高一上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.2.函数的零点一定位于区间()A. B.C. D.3.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.已知全集U=R,集合,,则集合()A. B.C. D.5.“”是“”成立的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.某工厂设计了一款纯净水提炼装置,该装置可去除自来水中的杂质并提炼出可直接饮用的纯净水,假设该装置每次提炼能够减少水中50%的杂质,要使水中的杂质不超过原来的4%,则至少需要提炼的次数为()(参考数据:取)A.5 B.6C.7 D.87.如图中的图象所表示的函数的解析式为()A.BC.D.8.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.9.已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.10.在空间给出下面四个命题(其中、为不同的两条直线),、为不同的两个平面)①②③④其中正确的命题个数有A.1个 B.2个C.3个 D.4个二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则实数的取值范围是__________.12.___________.13.已知某扇形的半径为,面积为,那么该扇形的弧长为________.14.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)15.函数在______单调递增(填写一个满足条件的区间)16.若函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?18.已知函数.(1)解关于不等式;(2)若对于任意,恒成立,求的取值范围.19.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表:空气质量指数空气质量类别优良轻度污染中度污染重度污染严重污染现分别从甲、乙两个城市月份监测的空气质量指数的数据中随机抽取天的数据,记录如下:甲乙(1)估计甲城市月份某一天空气质量类别为良的概率;(2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率;(3)记甲城市这天空气质量指数的方差为.从甲城市月份空气质量指数的数据中再随机抽取一个记为,若,与原有的天的数据构成新样本的方差记为;若,与原有的天的数据构成新样本的方差记为,试比较、、的大小.(结论不要求证明)20.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.21.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【详解】设函数在上是增函数,解得故选:A【点睛】本题主要考查了由复合函数的单调性求参数范围,属于中档题.2、C【解析】根据零点存在性定理,若在区间有零点,则,逐一检验选项,即可得答案.【详解】由题意得为连续函数,且在单调递增,,,,根据零点存在性定理,,所以零点一定位于区间.故选:C3、A【解析】由题可得,根据正弦函数的性质即得.【详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.4、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.5、B【解析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【详解】或,或,即“”是“”成立必要不充分条件,故选:B.【点睛】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.6、A【解析】根据题意列出相应的不等式,利用对数值计算可得答案.【详解】设经过次提炼后,水中的杂质不超过原来的4%,由题意得,得,所以至少需要5次提炼,故选:A.7、B【解析】分段求解:分别把0≤x≤1及1≤x≤2时解析式求出即可【详解】当0≤x≤1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1≤x≤2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得所以此时f(x)=.函数表达式可转化为:y=|x-1|(0≤x≤2)故答案为B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得8、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D9、D【解析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【详解】由题设有,令,则有即因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【点睛】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.10、C【解析】:①若α,则,根据线面垂直的性质可知正确;②若,则;不正确,也可能是m在α内;错误;③若,则;据线面垂直的判定定理可知正确;④若,根据线面平行判定的定理可知正确得到①③④正确,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.12、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:13、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.14、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202115、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)16、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m/s(2)45【解析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可.【小问1详解】当总质比为230时,,即A型火箭的最大速度为.【小问2详解】A型火箭的喷流相对速度提高到了原来的1.5倍,所以A型火箭的喷流相对速度为,总质比为,由题意得:因为,所以,即,所以不小于T的最小整数为4518、(1)当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)【解析】(1)将不等式,转化成,分别讨论当时,当时,当时,不等式的解集.(2)将对任意,恒成立问题,转化为,恒成立,再利用均值不等式求的最小值,从而得到a的取值范围.【详解】(1)因为不等式所以即当时,解得当时,解得当时,解得综上:当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)因为对于任意,恒成立所以,恒成立所以,恒成立令因为当且仅当,即时取等号所以【点睛】本题主要考查了含参一元二次不等式的解法以及恒成立问题,还考查了转化化归的思想及运算求解的能力,属于中档题.19、(1);(2);(3)【解析】(1)甲城市这天内空气质量类别为良有天,利用频率估计概率的思想可求得结果;(2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果;(3)根据题意可得出、、的大小关系.【详解】(1)甲城市这天内空气质量类别为良的有天,则估计甲城市月份某一天空气质量类别为良的概率为;(2)由题意,分别从甲、乙两个城市的统计数据中任取一个,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共个,用表示“这两个数据对应的空气质量类别都为轻度污染”,则事件包含的基本事件有:、、、,共个基本事件,所以,;(3)【点睛】方法点睛:求解古典概型概率的问题有如下方法:(1)列举法;(2)列表法;(3)树状图法;(4)排列组合数的应用.20、(1);(2).【解析】(1)求函数的定义域,就是求使得根式有意义的自变量的取值范围,然后求解分式不等式即可;(2)因为,所以一定有,从而得到,要保证,由它们的端点值的大小列式进行计算,即可求得结果.【详解】(1)要使函数有意义,则需,即,解得或,所以;(2)由题意可知,因为,所以,由,可求得集合,若,则有或,解得或,所以实数的取值范围是.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论