版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市六校联考2026届高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数2.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)3.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.4.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.5.已知向量=(3,0,1),=(﹣2,4,0),则3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)6.直线与直线,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知集合,集合或,是实数集,则()A. B.C. D.8.在的展开式中,只有第4项的二项式系数最大,则()A.5 B.6C.7 D.89.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.10.①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数为()A.0 B.1C.2 D.311.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线12.有一组样本数据、、、,由这组数据得到新样本数据、、、,其中,为非零常数,则()A.两组样本数据的样本平均数相同 B.两组样本数据的样本标准差相同C.两组样本数据的样本中位数相同 D.两组样本数据的样本众数相同二、填空题:本题共4小题,每小题5分,共20分。13.若与直线垂直,那么__________14.如图,在长方体ABCD—A1B1C1D1,AB=BC=2,CC1=1,则直线AD1与B1D所成角的余弦值为__.15.已知双曲线的两条渐近线的夹角为,则_______16.若数列满足,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;18.(12分)如图,在四棱锥中,底面是菱形,平面,,,分别为,的中点(1)证明:平面;(2)证明:平面19.(12分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.20.(12分)在平面直角坐标系中,已知椭圆过点,且离心率.(1)求椭圆的方程;(2)直线的斜率为,直线l与椭圆交于两点,求的面积的最大值.21.(12分)已知在长方形ABCD中,AD=2AB=2,点E是AD的中点,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求证:在四棱锥A-BCDE中,AB⊥AC.(2)在线段AC上是否存在点F,使二面角A-BE-F的余弦值为?若存在,找出点F的位置;若不存在,说明理由.22.(10分)已知四边形是菱形,四边形是矩形,平面平面,,,G是的中点(1)证明:平面;(2)求二面角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题2、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.3、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.4、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.5、A【解析】直接根据空间向量的线性运算,即可得到答案;【详解】,故选:A6、A【解析】根据直线与直线的垂直,列方程,求出,再判断充分性和必要性即可.【详解】解:若,则,解得或,即或,所以”是“充分不必要条件.故选:A.【点睛】本题考查直线一般式中直线与直线垂直的系数关系,考查充分性和必要性的判断,是基础题.7、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A8、B【解析】当n为偶数时,展开式中第项二项式系数最大,当n为奇数时,展开式中第和项二项式系数最大.【详解】因为只有一项二项式系数最大,所以n为偶数,故,得.故选:B9、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A10、B【解析】写出逆命题判断①;写出逆否命题判断②;写出否命题判断③.【详解】①:“若,则互为相反数”的逆命题为:“若互为相反数,则”,是真命题;②:“若,则”的逆否命题为:“若,则”.因为当时,有,但不成立.故“若,则”是假命题.③:“若,则”的否命题为:“若,则”.因为当时,有,但是,即不成立.故“若,则”是假命题..故选:B11、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B12、B【解析】利用平均数公式可判断A选项;利用标准差公式可判断B选项;利用中位数的定义可判断C选项;利用众数的定义可判断D选项.【详解】对于A选项,设数据、、、的平均数为,数据、、、的平均数为,则,A错;对于B选项,设数据、、、的标准差为,数据、、、的标准差为,,B对;对于C选项,设数据、、、中位数为,数据、、、的中位数为,不妨设,则,若为奇数,则,;若为偶数,则,.综上,,C错;对于D选项,设数据、、、的众数为,则数据、、、的众数为,D错.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由两条直线垂直知,得14、【解析】以为原点,所在直线为轴的正方向建立空间直角坐标系,求出,的坐标,由向量夹角公式可得答案.【详解】以为原点,所在直线为轴的正方向建立如图的坐标系,∵AB=BC=2,CC1=1,∴,,,,则,,则,,则cos<,>==,即AD1与B1D所成角的余弦值为,故答案为:.15、或【解析】首先判断渐近线的倾斜角,再求的值.【详解】由条件可知双曲线的其中一条渐近线方程是,因为两条渐近线的夹角是,所以直线的倾斜角是或,即或.故答案为:或16、7【解析】根据递推公式,依次求得值.【详解】依题意,由,可知,故答案为:7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据抛物线过点,且,利用抛物线的定义求解;(2)设,联立,根据,由,结合韦达定理求解.【小问1详解】解:由抛物线过点,且,得所以抛物线方程为;【小问2详解】设,联立得,,,,则,,即,解得或,又当时,直线与抛物线的交点中有一点与原点重合,不符合题意,故舍去;所以实数的值为.18、(1)证明见解析;(2)证明见解析.【解析】(1)取中点,结合三角形中位线性质可证得四边形为平行四边形,由此得到,由线面平行判定定理可证得结论;(2)利用菱形特点和线面垂直的性质可证得,,由线面垂直的判定定理可证得结论.【详解】(1)取中点,连接,分别为中点,,四边形为菱形,为中点,,,四边形为平行四边形,,又平面,平面,平面.(2)连接,四边形为菱形,,为等边三角形,又为中点,,平面,平面,,又平面,,平面.19、(1)(2),45【解析】(1)由等差数列的通项列出方程组,得出通项公式;(2)先得出,再由二次函数的性质得出最大值.【小问1详解】由,解得,即【小问2详解】,二次型函数开口向下,对称轴为,则当或时,有最大值45.20、(1);(2)2.【解析】(1)由离心率,得到,再由点在椭圆上,得到,联立求得,即可求得椭圆的方程.(2)设的方程为,联立方程组,根据根系数的关系和弦长公式,以及点到直线的距离公式,求得,结合基本不等式,即可求解.【详解】(1)由题意,椭圆的离心率,即,可得,又椭圆过点,可得,将代入,可得,故椭圆方程为.(2)设的方程为,设点,联立方程组,消去y整理,得,所以,又直线与椭圆相交,所以,解得,则,点P到直线的距离,所以,当且仅当,即时,的面积取得最大值为2.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21、(1)证明见解析(2)点F为线段AC的中点【解析】(1)由平面几何知识证得CE⊥BE,再根据面面垂直的性质,线面垂直的判定和性质可得证;(2)取BE的中点O,以O为原点,分别以的方向为x轴,y轴,z轴建立空间直角坐标系,假设在线段AC上存在点F,设=λ,运用二面角的向量求解方法可求得,可得点F的位置.【小问1详解】证明:因为在长方形ABCD中,AD=2AB=2,点E是AD的中点,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小问2详解】解:存在点F,F为线段AC的中点.由(1)得△ABE和△BEC均为等腰直角三角形,取BE的中点O,则,又平面ABE⊥平面BCDE,面面,所以面,以O为原点,分别以的方向为x轴,y轴,z轴建立空间直角坐标系,如图所示,取平面ABE的一个法向量为.假设在线段AC上存在点F,使二面角A-BE-F的余弦值为.则A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),设=λ,则+λ=(1-λ,2λ,1-λ),又=(2,0,0),设平面BEF的法向量为,可得,即得,可取y=1,得,所以,解得λ=,即当点F为线段AC的中点时,二面角A-BE-F的余弦值为.22、(1)证明见解析(2)【解析】(1)设,线段的中点为H,分别连接,可证,从而可得平面;(2)建立如图所示的空间直角坐标系,求出平面的一个法向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年崇左市市场监督管理局公开招聘所属事业单位编外聘用人员备考题库及完整答案详解1套
- 2026年大庆市工人文化宫公开招聘工作人员7人备考题库附答案详解
- 2026年中铝长城检测技术有限公司招聘备考题库及一套答案详解
- 2026年临颍县事业单位人才引进备考题库及完整答案详解1套
- 2026年四川理塘县国有资产经营投资管理集团有限责任公司校园招聘5人备考题库及参考答案详解一套
- 2026年中电投广西核电有限公司招聘备考题库含答案详解
- 2026年中国疾病预防控制中心艾防中心公开招聘参比实验室科研助理备考题库含答案详解
- 2026年庆阳市引进高层次和急需紧缺人才115人备考题库及参考答案详解一套
- 2026年北京城投国际物流集团有限公司天津科技分公司招聘备考题库及一套答案详解
- 2026年甘肃能源化工职业学院单招职业倾向性测试题库附答案
- 吞咽功能指南解读
- 脑卒中吞咽障碍评估护理
- 工程项目风险评估与控制方案
- 智慧校园背景下高校后勤设施设备全生命周期管理研究
- 中建三局2024年项目经理思维导图
- 小区道闸管理办法
- DB42-T 2391-2025 全域国土综合整治项目实施方案编制指南
- DB3301∕T 0419-2023 婴幼儿成长驿站管理与服务规范
- 老年医院重点专科建设方案
- 2025年江苏省苏州市初二(上)英语期末模拟卷(二)含答案
- 规培中医病例讨论流程规范
评论
0/150
提交评论