版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金学导航大联考2026届高一数学第一学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.2.是第四象限角,,则等于A. B.C. D.3.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则4.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.5.已知函数的值域为R,则a的取值范围是()A. B.C. D.6.我们知道,函数的图象关于原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.据此,我们可以得到函数图象的对称中心为()A. B.C. D.7.若,,则的值为()A. B.C. D.8.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.89.要得到函数f(x)=cos(2x-)的图象,只需将函数g(x)=cos2x的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移单位长度 D.向右平移个单位长度10.,则A.1 B.2C.26 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是奇函数,当时,,若,则m的值为______.12.已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,则a的取值范围为________13.设,则________.14.已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述:①是周期函数;②是它的一条对称轴;③是它图象的一个对称中心;④当时,它一定取最大值;其中描述正确的是__________15.函数的图象恒过定点,点在幂函数的图象上,则=____________16.已知集合,则的元素个数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数且是定义在上的奇函数(1)求的值;(2)若,试判断函数的单调性不需证明,求出不等式的解集18.已知定义域为的函数是奇函数.(1)求的解析式;(2)若恒成立,求实数的取值范围.19.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.20.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围21.已知函数.(1)判断函数f(x)的单调性并给出证明;(2)若存在实数a使函数f(x)是奇函数,求a;(3)对于(2)中的a,若,当x∈[2,3]时恒成立,求m的最大值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.2、B【解析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值【详解】由题是第四象限角,则故选B【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键3、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.4、B【解析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.5、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D6、A【解析】依题意设函数图象的对称中心为,则为奇函数,再根据奇函数的性质得到方程组,解得即可;【详解】解:依题意设函数图象的对称中心为,由此可得为奇函数,由奇函数的性质可得,解得,则函数图象的对称中心为;故选:A7、D【解析】根据诱导公式即可直接求值.【详解】因为,所以,又因为,所以,所以.故选:D.8、B【解析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.9、D【解析】利用函数的图象变换规律即可得解.【详解】解:,只需将函数图象向右平移个单位长度即可故选.【点睛】本题主要考查函数图象变换规律,属于基础题10、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数12、(-4,4]【解析】根据复合函数的单调性,结合真数大于零,列出不等式求解即可.【详解】令g(x)=x2-ax+3a,因为f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以a≤2且g(2)>0,所以a≤4且4+a>0,所以-4<a≤4故答案为:.【点睛】本题考查由对数型复合函数的单调性求参数范围,注意定义域即可,属基础题.13、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:214、①③【解析】先对已知是定义在的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确.【详解】因为为偶函数,所以,即是它的一条对称轴;又因为是定义在上的奇函数,所以,即,则,,即是周期函数,即①正确;因为是它的一条对称轴且,所以()是它的对称轴,即②错误;因为函数是奇函数且是以为周期周期函数,所以,所以是它图象的一个对称中心,即③正确;因为是它的一条对称轴,所以当时,函数取得最大值或最小值,即④不正确.故答案为:①③.15、【解析】因为函数图象恒过定点,则可之令2x-3=1,x=2,函数值为4,故过定点(2,4),然后根据且点在幂函数的图象上,设,故可知=9,故答案为9.考点:对数函数点评:本题考查了对数函数图象过定点(1,0),即令真数为1求对应的x和y,则是所求函数过定点的坐标16、5【解析】直接求出集合A、B,再求出,即可得到答案.【详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由奇函数的性质可得,从而可求出的值;(2)由可得,从而可判断出函数单调性,然后根据函数的奇偶性和单调性解不等式【小问1详解】∵是定义在上的奇函数,,即
,,
当时,,,
故符合题意【小问2详解】∵,又且,,都是上的减函数,是定义在上的减函数,故,,不等式的解集18、(1);(2).【解析】(1)由是奇函数可得,从而可求得值,即可求得的解析式;(2)由复合函数的单调性判断在上单调递减,结合函数的奇偶性将不等式恒成立问题转化为,令,利用二次函数的性质求得的最大值,即可求得的取值范围【详解】(1)因为函数为奇函数,所以,即,所以,所以,可得,函数.(2)由(1)知所以在上单调递减.由,得,因为函数是奇函数,所以,所以,整理得,设,,则,当时,有最大值,最大值为.所以,即.【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.19、(1)(2)【解析】(1)根据三角函数的定义可求得的值,再利用诱导公式结合同角的三角函数关系化简可得结果;(2)利用二倍角的余弦公式可直接求得答案.【小问1详解】由角的终边经过点,可得,,故;小问2详解】.20、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是21、(1)单调递增(2)见解析【解析】(1)根据单调性定义:先设再作差,变形化为因子形式,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(2)根据定义域为R且奇函数定义得f(0)=0,解得a=1,再根据奇函数定义进行验证(3)先根据参变分离将不等式恒成立化为对应函数最值问题:的最小值,再利用对勾函数性质得最小值,即得的范围以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- AI驱动下的物流包装碳足迹动态教学模式构建
- 2026届江苏省南通市通州 海安高一上数学期末达标检测试题含解析
- 2026届河南省新乡市辉县市第一中学高一数学第一学期期末监测模拟试题含解析
- 2026年厦门远海集装箱码头有限公司招聘备考题库及答案详解1套
- 2026年山东中建城市发展有限公司校园招聘备考题库及一套参考答案详解
- 2026年北京市海淀区富力桃园幼儿园招聘备考题库及一套参考答案详解
- 2026届山西省山大附中高一上数学期末学业质量监测模拟试题含解析
- 2026年中国邮电器材集团有限公司招聘备考题库及参考答案详解1套
- 2026年厦门市公安局局属单位公开招聘非在编辅助岗位人员备考题库有答案详解
- 2026年南京市金陵汇文学校(初中部)公开招聘在编教师8人备考题库及一套完整答案详解
- 2025年安徽省普通高中学业水平合格性考试化学试卷(含答案)
- 2025年宁波市公共交通集团有限公司下属分子公司招聘备考题库及答案详解参考
- 别墅浇筑施工方案(3篇)
- 2026年关于汽车销售工作计划书
- 肿瘤放射治疗的新技术进展
- 2024外研版四年级英语上册Unit 4知识清单
- 视频会议系统施工质量控制方案
- 2025年高二数学建模试题及答案
- 2025年党的二十届四中全会精神宣讲稿及公报解读辅导报告
- 压力管道安装单位压力管道质量安全风险管控清单
- 停车场道闸施工方案范本
评论
0/150
提交评论