版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市南通中学2026届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则2.函数的零点所在区间为()A. B.C. D.3.过点与且圆心在直线上的圆的方程为A. B.C. D.4.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.5.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.6.若,都为正实数,,则的最大值是()A. B.C. D.7.函数部分图象如图所示,则下列结论错误的是()A.频率为 B.周期为C.振幅为2 D.初相为8.设,满足约束条件,且目标函数仅在点处取得最大值,则原点到直线的距离的取值范围是()A. B.C. D.9.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则10.已知集合,集合,则下列结论正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,”的否定为____.12.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.13.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______14.已知甲、乙、丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中恰有两人被录取的概率为___________.15.已知角的终边经过点,则__16.=_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知偶函数.(1)求实数的值;(2)经过研究可知,函数在区间上单调递减,求满足条件的实数a的取值范围.18.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.19.已知(1)化简(2)若是第三象限角,且,求的值20.(1)已知函数(其中,,)的图象与x轴的交于A,B两点,A,B两点的最小距离为,且该函数的图象上的一个最高点的坐标为.求函数的解析式(2)已知角的终边在直线上,求下列函数的值:21.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.2、B【解析】根据零点存在性定理即可判断求解.【详解】∵f(x)定义域为R,且f(x)在R上单调递增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零点.故选:B.3、B【解析】先求得线段AB的中垂线的方程,再根据圆心又在直线上求得圆心,圆心到点A的距离为半径,可得圆的方程.【详解】因为过点与,所以线段AB的中点坐标为,,所以线段AB的中垂线的斜率为,所以线段AB的中垂线的方程为,又因为圆心在直线上,所以,解得,所以圆心为,所以圆的方程为.故选:B【点睛】本题主要考查圆的方程的求法,还考查了运算求解的能力,属于中档题.4、A【解析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形5、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题6、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D7、A【解析】根据图象可得、,然后利用求出即可.【详解】由图可知,C正确;,则,,B正确;,A错误;因为,则,即,又,则,D正确故选:A8、B【解析】作出可行域,由目标函数仅在点取最大值,分,,三种情况分类讨论,能求出实数的取值范围.然后求解到直线的距离的表达式,求解最值即可详解】解:由约束条件作出可行域,如右图可行域,目标函数仅在点取最大值,当时,仅在上取最大值,不成立;当时,目标函数的斜率,目标函数在取不到最大值当时,目标函数的斜率,小于直线的斜率,综上,原点到直线的距离则原点到直线的距离的取值范围是:故选B【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意线性规划知识的合理运用.9、A【解析】本道题目分别结合平面与平面平行判定与性质,平面与平面平行垂直判定与性质,即可得出答案.【详解】A选项,结合一条直线与一平面垂直,则过该直线的平面垂直于这个平面,故正确;B选项,平面垂直,则位于两平面的直线不一定垂直,故B错误;C选项,可能平行于与相交线,故错误;D选项,m与n可能异面,故错误【点睛】本道题目考查了平面与平面平行判定与性质,平面与平面平行垂直判定与性质,发挥空间想象能力,找出选项的漏洞,即可.10、B【解析】由题意得,结合各选项知B正确.选B二、填空题:本大题共6小题,每小题5分,共30分。11、,【解析】利用全称量词命题的否定可得出结论.【详解】命题“,”为全称量词命题,该命题的否定为“,”.故答案为:,.12、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.13、【解析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.14、##0.15【解析】利用相互独立事件概率乘法公式分别求出甲和乙被录取的概率、甲和丙被录取的概率、乙和丙被录取的概率,然后即可求出他们三人中恰有两人被录取的概率.【详解】因为甲、乙、丙三人被该公司录取的概率分别是,且三人录取结果相互之间没有影响,甲和乙被录取的概率为,甲和丙被录取的概率为,乙和丙被录取的概率为则他们三人中恰有两人被录取的概率为,故答案为:.15、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.16、##【解析】利用对数的运算法则进行求解.【详解】.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0(2)【解析】(1)首先求出函数的定义域,再根据偶函数的性质,利用特殊值求出参数的值,再代入检验即可;(2)根据偶函数的性质将函数不等式转化为自变量的不等式,解得即可.【小问1详解】解:由,有,可得函数的定义域为,,由函数为偶函数,有,解得.当时,,由,可知此时函数为偶函数,符合题意,由上知实数m的值为0;【小问2详解】解:由函数为偶函数,且函数在区间上单调递减,可得函数在区间上单调递增,若,有解得且,故实数a的取值范围为.18、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为,即,所以函数的最小正周期,令,,解得,,所以函数的单调递增区间为,;【小问2详解】解:因为,所以,所以当,即时函数取得最小值,即,当,即时函数取得最大值,即;19、(1);(2).【解析】分析:(1)根据诱导公式化简即得,(2)先根据诱导公式得,再根据平方关系求,即得的值.详解:(1).(2)由,得:∵是第三象限角,∴则点睛:本题考查诱导公式以及同角三角函数关系,考查基本求解能力.20、(1);(2)当为第一象限角时:;当为第三象限角时:.【解析】(1)由题意得,,进而求得,根据最高点结合可得,进而可求得的解析式;(2)由题意得为第一或第三象限角,分两种情况由同角三角函数关系可解得结果.【详解】(1)由题意得,,则,解得.根据最高点得,所以,即,因,所以,取得.所以.(2)由题意得,则为第一或第三象限角.当为第一象限角时:由得,代入得,又,所以,则.所以;当为第三象限角时:同理可得.21、(1)或(2)【解析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中央2025年中国残联直属单位招聘应届生86人笔试历年备考题库附带答案详解
- 上海市2025上海复旦大学药学院招聘教学办公室秘书1人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 上海上海市中医医院招聘工作人员笔试历年常考点试题专练附带答案详解
- 上城区2025年浙江杭州市上城区小营环卫所招聘2人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 黔西南布依族苗族自治州2025贵州黔西南州发展和改革委员会(黔西南州粮食和物资储备局)十二届人博笔试历年参考题库典型考点附带答案详解(3卷合一)
- 2026正元国际矿业有限公司春季校园招聘12人笔试参考题库附带答案详解
- 2026国家能源集团山西公司秋季校园招聘39人笔试参考题库附带答案详解
- 2026中煤科工集团北京华宇工程有限公司全球校园招聘40人笔试参考题库附带答案详解
- 2025甘肃电投集团紧缺人才招聘27人笔试参考题库附带答案详解
- 2025河南驻马店市正阳县县管国有企业招聘20人(第二批)笔试参考题库附带答案详解
- 《中国临床肿瘤学会(csco)小细胞肺癌诊疗指南(2025版)》
- 2025至2030中国半导体AMC过滤器行业竞争优势及前景趋势预判报告
- 乡镇高层灭火救援疏散应急演练方案及流程
- 五恒系统节能环保施工技术规范与优化研究
- 大学期末考试思政题库及答案
- 师徒结对活动记录表-师傅
- have与has的用法微课课件
- 如何做员工考勤管理制度
- 大学形势政策课件
- 城市供水管道施工重难点分析及改进措施
- 2025年南京市事业单位教师招聘体育学科专业知识历年真题解析试卷
评论
0/150
提交评论