2026届安徽省安庆第一中学高二数学第一学期期末调研试题含解析_第1页
2026届安徽省安庆第一中学高二数学第一学期期末调研试题含解析_第2页
2026届安徽省安庆第一中学高二数学第一学期期末调研试题含解析_第3页
2026届安徽省安庆第一中学高二数学第一学期期末调研试题含解析_第4页
2026届安徽省安庆第一中学高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省安庆第一中学高二数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.82.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.3.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.4.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.5.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要6.已知集合,则()A. B.C. D.7.已知椭圆的左、右焦点分别是,焦距,过点的直线与椭圆交于两点,若,且,则椭圆C的方程为()A. B.C. D.8.曲线在点处的切线方程是A. B.C. D.9.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.10.两条平行直线与之间的距离为()A. B.C. D.11.抛物线上的一点到其焦点的距离等于()A. B.C. D.12.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.以点为圆心,且与直线相切的圆的方程是____________14.已知点和,M是椭圆上一动点,则的最大值为________.15.若直线:x-2y+1=0与直线:2x+my-1=0相互垂直,则实数m的值为________.16.设函数满足,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若是双曲线的两个焦点.(1)若双曲线上一点到它的一个焦点的距离等于10,求点到另一个焦点距离;(2)如图若是双曲线左支上一点,且,求的面积.18.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.19.(12分)已知椭圆的左,右焦点为,椭圆的离心率为,点在椭圆C上(1)求椭圆C的方程;(2)点T为椭圆C上的点,若点T在第一象限,且与x轴垂直,过T作两条斜率互为相反数的直线分别与椭圆C交于点M,N,探究直线的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由20.(12分)解下列不等式:(1);(2).21.(12分)已知抛物线的焦点为F,点在抛物线上,且在第一象限,的面积为(O为坐标原点).(1)求抛物线的标准方程;(2)经过点的直线与交于,两点,且,异于点,若直线与的斜率存在且不为零,证明:直线与的斜率之积为定值.22.(10分)三棱锥各棱长为2,E为AC边上中点(1)证明:面BDE;(2)求二面角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.2、C【解析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【详解】由题设,易知:,由知:,即,整理得:.故选:C3、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A4、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.5、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B6、D【解析】由集合的关系及交集运算,逐项判断即可得解.【详解】因为集合,,所以,,.故选:D.【点睛】本题考查了集合关系的判断及集合的交集运算,考查了运算求解能力,属于基础题.7、A【解析】画出图形,利用已知条件,推出,延长交椭圆于点,得到直角和直角,设,则,根据椭圆的定义转化求解,即可求得椭圆的方程.【详解】如图所示,,则,延长交椭圆于点,可得直角和直角,设,则,根据椭圆的定义,可得,在直角中,,解得,又在中,,代入可得,所以,所以椭圆的方程为.故选:A.8、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.9、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题10、D【解析】由已知有,所以直线可化为,利用两平行直线距离公式有,选D.点睛:本题主要考查两平行直线间的距离公式,属于易错题.在用两平行直线距离公式时,两直线中的系数要相同,不然不能用此公式计算11、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C12、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线与圆相切,圆心到直线距离等于半径,由点到直线的距离公式求出半径,然后可得.【详解】圆心到直线的距离,又圆与直线相切,所以,所以圆的方程为.故答案为:14、【解析】由题设条件可知,.当M在直线与椭圆交点上时,在第一象限交点时有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值.由此能够求出的最大值.【详解】解:A为椭圆右焦点,设左焦点为,则由椭圆定义,于是.当M不在直线与椭圆交点上时,M、F、B三点构成三角形,于是,而当M在直线与椭圆交点上时,在第一象限交点时,有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值为.故答案为:.【点睛】本题考查椭圆的基本性质,解题时要熟练掌握基本公式.15、1【解析】由两条直线垂直可知,进而解得答案即可.【详解】因为两条直线垂直,所以.故答案为:1.16、5【解析】考点:函数导数与求值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用双曲线定义,根据点到一个焦点的距离求点到另一个焦点的距离即可;(2)先根据定义得到,两边平方求得,即证,,再计算直角三角形面积即可.【小问1详解】是双曲线的两个焦点,则,点M到它的一个焦点的距离等于10,设点到另一个焦点的距离为,则由双曲线定义可知,,解得或(舍去)即点到另一个焦点的距离为;【小问2详解】P是双曲线左支上的点,则,则,而,所以,即,所以为直角三角形,,所以.18、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值范围.【详解】(1),故,而,故,故,解得:,故,故的切线方程是:,即;(2)当时,恒成立等价于,令,.则,令,解得:;令,解得:;所以在上单减,在上单增,所以,所以.即实数a的取值范围为.19、(1);(2)直线的斜率为定值,且定值为.【解析】(1)根据椭圆的离心率及所过的点求出椭圆参数a、b,即可得椭圆标准方程.(2)由题设得,法一:设为,联立椭圆方程应用韦达定理求M坐标,根据与斜率关系求N的坐标,应用两点式求斜率;法二:设为,,联立椭圆方程,应用韦达定理及得到关于参数m、k的方程,即可判断是否为定值.【小问1详解】由题意,则,又,所以椭圆C方程为,代入有,解得,所以,故椭圆的标准方程为;【小问2详解】由题设易知:,法一:设直线为,由,消去y,整理得,因为方程有一个根为,所以M的横坐标为,纵坐标,故M为,用代替k,得N为,所以,故直线的斜率为定值法二:由已知直线的斜率存在,可设直线为,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,则直线过点T,不合题意,所以.即,故直线的斜率为定值.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及得到关于直线斜率的方M、N程,或求出的坐标,应用两点式求斜率.20、(1)(2)【解析】(1)利用十字相乘解题即可(2)利用分子分母同号为正,异号为负思想,注意讨论分母不为0【小问1详解】由题,即,解得或,即;【小问2详解】由题,解得或,即21、(1);(2)证明见解析.【解析】(1)由题可得,然后结合面积公式可得,即求;(2)通过分类讨论,利用韦达定理法结合斜率公式计算即得.【小问1详解】因为点抛物线上,所以,,,因为,故解得,抛物线方程为;【小问2详解】当直线的斜率不存在时,直线为,得,.,,则.当直线的斜率存在时,设直线为,设,,联立得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论