版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省渭南市2026届高一数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于的不等式在恒成立,则实数的取值范围是()A. B.C. D.2.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.3.已知函数则等于()A.-2 B.0C.1 D.24.已知a>0,则当取得最小值时,a值为()A. B.C. D.35.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.237.若直线与互相平行,则()A.4 B.C. D.8.计算()A. B.C. D.9.已知角的终边上有一点的坐标是,则的值为()A. B.C. D.10.函数(,且)的图象必过定点A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在内不等式的解集为__________12.如果满足对任意实数,都有成立,那么a的取值范围是______13.已知幂函数过定点,且满足,则的范围为________14.已知,,则__________15.已知函数是定义在上的奇函数,当时,为常数),则=_________.16.函数的单调减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求不等式的解集;(2)若时,不等式恒成立,求的取值范围.18.已知.(1)若,求的值;(2)若,且,求的值.19.对于函数,若在定义域内存在实数,满足,则称函数为“局部中心函数”.(1)已知二次函数,试判断是否为“局部中心函数”.并说明理由;(2)若是定义域为R上的“局部中心函数”,求实数m的取值范围.20.已知函数(1)试判断函数的奇偶性;(2)求函数的值域.21.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】转化为当时,函数的图象不在的图象的上方,根据图象列式可解得结果.【详解】由题意知关于的不等式在恒成立,所以当时,函数的图象不在的图象的上方,由图可知,解得.故选:A【点睛】关键点点睛:利用函数的图象与函数的图象求解是解题关键.2、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D3、A【解析】根据分段函数,根据分段函数将最终转化为求【详解】根据分段函数可知:故选:A4、C【解析】利用基本不等式求最值即可.【详解】∵a>0,∴,当且仅当,即时,等号成立,故选:C5、A【解析】根据充分必要条件的定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A6、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.7、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.8、A【解析】利用正切的诱导公式即可求解.【详解】,故选:A.9、D【解析】求出,由三角函数定义求得,再由诱导公式得结论【详解】依题有,∴,∴.故选:D10、C【解析】因为函数,且有(且),令,则,,所以函数的图象经过点.故选:C.【点睛】本题主要考查对数函数(且)恒过定点,属于基础题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用余弦函数的性质即可得到结果.【详解】∵,∴,根据余弦曲线可得,∴.故答案为:12、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.13、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.14、【解析】构造角,,再用两角和的余弦公式及二倍公式打开.【详解】,,,,,故答案为:【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.15、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.16、【解析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)把代入函数解析式,求解关于的一元二次不等式,进一步求解指数不等式得答案;(2)不等式恒成立,等价于恒成立,求出时的范围,可得,即可求出的取值范围【详解】解:(1)当时,即:,则不等式的解集为(2)∵由条件:∴∴恒成立∵即的取值范围是【点睛】解不等式的常见类型:(1)一一二次不等式用因式分解法或图像法;(2)指对数型不等式化为同底的结构,利用单调性解不等式;(3)解抽象函数型不等式利用函数的单调性18、(1)(2)【解析】(1)利用诱导公式求出,由已知得出,再由齐次式即可求解.(2)由题意可得,,再由两角和的正切公式即可求解.【小问1详解】由已知,,得所以【小问2详解】由,,可知,,∴.∵,∴.而,∴.∴,∴.19、(1)函数为“局部中心函数”,理由见解析;(2).【解析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”;(2)条件是定义域为上的“局部中心函数”可转化为方程有解,再利用整体思路得出结果.【详解】解:(1)由题意,(),所以,,当时,解得:,由于,所以,所以为“局部中心函数”.(2)因为是定义域为上的“局部中心函数”,所以方程有解,即在上有解,整理得:,令,,故题意转化为在上有解,设函数,当时,在上有解,即,解得:;当时,则需要满足才能使在上有解,解得:,综上:,即实数m的取值范围.20、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1≤sinx≤1,求出函数的值域【详解】(1),的定义域为,则对中的任意都有,所以为上的奇函数;(2)令,,,
,,,
即值域为.【点睛】本题考查对数的运算性质,函数奇偶性的判断,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南海区狮山镇石碣小学临聘教师招聘备考题库及一套答案详解
- 2026年中国大唐集团核电有限公司系统各岗位公开招聘5人备考题库及一套答案详解
- 2026年成都市温江区涌泉街道社区卫生服务中心编外人员招聘备考题库及答案详解参考
- 2026年乐从镇沙滘小学招聘语文、数学、英语临聘老师备考题库带答案详解
- 2025年港口镇镇属企业集团公开招聘员工备考题库及答案详解一套
- 丹徒区2025江苏镇江市丹徒区事业单位集中招聘工作人员46人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 智慧校园生态化智能学习环境构建对中小学生核心素养的影响研究教学研究课题报告
- 大学化学课程中食品防腐剂检测实验技术人才培养模式研究课题报告教学研究课题报告
- 东莞市2025上半年广东东莞市发展和改革局自主(公开)招聘聘用人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 上饶市2025江西上饶市事业单位统一招聘工作人员1158人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 被打和解协议书范本
- 《糖尿病合并高血压患者管理指南(2025版)》解读
- 职业暴露考试试题及答案
- DB61-T 1843-2024 酸枣种植技术规范
- 机械密封安装及维护培训
- 古建筑修缮加固施工方案
- DG-TJ08-19-2023园林绿化养护标准
- 上海市2024-2025学年高二上学期期末考试英语试题(含答案无听力原文及音频)
- 实验室评审不符合项原因及整改机制分析
- 农贸市场摊位布局措施
- 一列肠ESD个案护理
评论
0/150
提交评论