版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省肥东市高级中学数学高二上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.酒驾是严重危害交通安全的违法行为.根据国家有关规定:100血液中酒精含量在20~80之间为酒后驾车,80及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为()(参考数据:,)A.6 B.7C.8 D.92.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.3.已知椭圆的长轴长是短轴长的倍,左焦点、右顶点和下顶点分别为,坐标原点到直线的距离为,则的面积为()A. B.4C. D.4.已知等比数列的前项和为,若公比,则=()A. B.C. D.5.若实数,满足约束条件,则的最小值为()A.-3 B.-2C. D.16.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.807.若,则()A.1 B.2C.4 D.88.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.109.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.10.已知点在抛物线上,则点到抛物线焦点的距离为()A.1 B.2C.3 D.411.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.512.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为,,上顶点为A,直线与椭圆C的另一个交点为B,则的面积为___________.14.已知数列满足,若对任意恒成立,则实数的取值范围为________15.与同一条直线都相交的两条直线的位置关系是________16.已知圆,则圆心坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,证明:存在唯一的零点;(2)若,求实数的取值范围.18.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和19.(12分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求20.(12分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于21.(12分)已知椭圆C:的离心率为,左、右焦点分别为、,椭圆上的点到左焦点最近的距离为.(1)求椭圆C的方程;(2)若经过点的直线与椭圆C交于M,N两点,当的面积取得最大值时,求直线的方程.22.(10分)如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,四边形ACEF为正方形,且平面ABCD⊥平面ACEF(1)证明:AB⊥CF;(2)求点C到平面BEF距离;(3)求平面BEF与平面ADF夹角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意列出不等式,利用指对数幂的互化和对数的运算公式即可解出不等式.【详解】设该驾驶员至少需经过x个小时才能驾驶汽车,则,所以,则,所以该驾驶员至少需经过约8个小时才能驾驶汽车.故选:C2、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.3、C【解析】设,根据题意,可知的方程为直线,根据原点到直线的距离建立方程,求出,进而求出,的值,以及到直线的距离,再根据面积公式,即可求出结果.【详解】设,由题意可知,其中,所以的方程为,即所以原点到直线的距离为,所以,即,;所以直线的方程为,所以到直线的距离为;又,所以的面积为.故选:C.4、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.5、B【解析】先画出可行域,由,作出直线向下平移过点A时,取得最小值,然后求出点A的坐标,代入目标函数中可求得答案【详解】由题可得其可行域为如图,l:,当经过点A时,取到最小值,由,得,即,所以的最小值为故选:B6、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C7、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.8、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题9、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题10、B【解析】先求出抛物线方程,焦点坐标,再用两点间距离公式进行求解.【详解】将代入抛物线中得:,解得:,所以抛物线方程为,焦点坐标为,所以点到抛物线焦点的距离为故选:B11、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.12、D【解析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出直线的方程,联立方程,求得B点的坐标,从而可得出答案.【详解】解:由题意知,,,直线的方程为,联立方程组,解得,或,即,所以.故答案为:.14、【解析】根据给定条件求出,构造新数列并借助单调性求解作答.【详解】在数列中,,当,时,,则有,而满足上式,因此,,,显然数列是递增数列,且,,又对任意恒成立,则,所以实数的取值范围为.故答案为:【点睛】思路点睛:给定数列的前项和或者前项积,求通项时,先要按和分段求,然后看时是否满足时的表达式,若不满足,就必须分段表达.15、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,16、【解析】将圆的一般方程配方程标准方程即可.【详解】圆,即,它的圆心坐标是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)当时,求导得到,判断出函数的单调性,求出最值,可证得命题成立;(2)当且时,不满足题意,故,又定义域为,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数的取值范围【详解】(1)函数的定义域为,当时,由,当时,,单调递减;当时,,单调递增;.且,故存在唯一的零点;(2)当时,不满足恒成立,故由定义域为,可得,令,则,则当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得最大值(1),故实数的取值范围是【点睛】方法点睛:本题考查函数零点的问题,考查导数的应用,考查不等式的恒成立问题,关于恒成立问题的几种常见解法总结如下:
参变分离法,将不等式恒成立问题转化函数求最值问题;
主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;
分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;
数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解18、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详解】由19、(1)证明见解析;(2).【解析】(1)由已知变形得出,即可证得结论成立;(2)计算,利用并项求和法可求得.【小问1详解】证明:对任意的,,则,且,故数列为等比数列,且该数列的首项为,公比也为,故.【小问2详解】解:,所以,,因此,.20、(1);(2)存在,1;(3)证明见解析.【解析】(1)根据几何关系即可求p;(2)求解为定值1,即可求λ=1;(3)先求的面积,再由(为三角周长)可求内切圆半径r.【小问1详解】由题意焦点到准线的距离等于该正三角形一条边上的高线,因此,∴抛物线E的方程为【小问2详解】设直线的斜率为,直线方程为,记,,消去,得由,得且,,,,因此,即存在实数满足要求【小问3详解】由(2)知,,点F到直线AB的距离,∴的面积记的内切圆半径为r,∵,∴∴内切圆的面积小于21、(1)(2)【解析】(1)根据题意得,,进而解方程即可得答案;(2)根据题意设直线的方程,,,进而,再联立方程,结合韦达定理求解即可.【小问1详解】解:因为椭圆C:的离心率为,所以,因为椭圆上的点到左焦点最近的距离为,所以所以,所以椭圆C的方程为.【小问2详解】解:根据题意,设直线的方程,,设,联立方程得,所以,解得或.,所以的面积为令,则,当且仅当,即时,等号成立.所以当的面积取得最大值时,直线的方程为.22、(1)证明见解析;(2);(3).【解析】(1)利用余弦定理计算AC,再证明即可推理作答.(2)以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,借助空间向量计算点C到平面BEF的距离.(3)利用(2)中坐标系,用向量数量积计算两平面夹角余弦值,进而求解作答.小问1详解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,则,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小问2详解】因四边形ACE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 28889-2012复合材料面内剪切性能试验方法》专题研究报告
- 《GBT 20944.3-2008纺织品 抗菌性能的评价 第3部分:振荡法》专题研究报告
- 《GBT 9978.7-2008建筑构件耐火试验方法 第7部分:柱的特殊要求》专题研究报告
- 道路安全培训通讯稿课件
- 道路保通安全知识培训课件
- 道路交通安全教学课件
- 道路交通安全培训学习课件
- 2025-2026年人教版七年级数学上册期末试题(附答案)
- 2026年甘肃平凉市高职单招英语题库试题附答案
- 2026年广东省辅警人员招聘考试题库含答案
- 2025贵州贵阳产业发展控股集团有限公司招聘27人考试参考题库附答案
- 2026贵州省法院系统招聘聘用制书记员282人笔试参考题库及答案解析
- 自然资源部所属单位2026年度公开招聘工作人员备考题库(第一批634人)含答案详解
- 2025内蒙古交通集团有限公司社会化招聘168人笔试考试参考试题及答案解析
- 苏州工业园区领军创业投资有限公司招聘备考题库必考题
- 2025广东东莞市东城街道办事处2025年招聘23人模拟笔试试题及答案解析
- 2025年及未来5年市场数据中国硝基化合物行业投资研究分析及发展前景预测报告
- 2026年内蒙古建筑职业技术学院单招职业适应性测试题库带答案
- 园博园(一期)项目全过程BIM技术服务方案投标文件(技术标)
- 2025-2026学年湘美版三年级美术上册全册教案
- 2025年软考电子商务设计师真题答案
评论
0/150
提交评论