版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省邹平一中2026届高一上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且,则A. B.C. D.2.已知集合,.则()A. B.C. D.3.若cos(πA.-29C.-594.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.5.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则6.函数的零点所在的一个区间是A. B.C. D.7.方程的根所在的区间为A. B.C. D.8.已知,,,,则A. B.C. D.9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.10.已知函数,的值域为,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是_____________________12.已知扇形的弧长为,且半径为,则扇形的面积是__________.13.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;14.设函数,则__________15.已知正实数,,且,若,则的值域为__________16.已知,若,使得,若的最大值为M,最小值为N,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求(2)设与的夹角为,求18.有两直线和,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值19.已知二次函数.若当时,的最大值为4,求实数的值.20.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.21.已知函数f(x)=2x,g(x)=(4﹣lnx)•lnx+b(b∈R)(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,,,,.故选:A.2、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.3、C【解析】cos(π2-α)=sin4、C【解析】先根据点在曲线上求出,然后根据即可求得的值【详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C5、D【解析】由不等式性质依次判断各个选项即可.【详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.6、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】令函数,则方程的根即为函数的零点再根据函数零点的判定定理可得函数零点所在区间【详解】令函数,则方程的根即为函数的零点,再由,且,可得函数在上有零点故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题8、C【解析】分别求出的值再带入即可【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题9、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D10、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用指数函数的性质即可求解.【详解】,即,故答案为:.12、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.13、15海里/小时【解析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时14、【解析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出.【详解】因为,所以,所以.【点睛】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题.15、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.16、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)【解析】分析:(1)直接利用数量积的坐标表示求的值.(2)直接利用向量的夹角公式求.详解:(1);(2)∵,,∴,∴点睛:(1)本题主要考查向量的数量积和向量的夹角,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)向量的夹角公式为.18、.【解析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,)两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即yE=2∴S四边形OCEA=S△BCE﹣S△OAB|BC|•yE|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号∴l1,l2与坐标轴围成的四边形面积的最小值为【点睛】本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题19、或.【解析】分函数的对称轴和两种情况,分别建立方程,解之可得答案.【详解】二次函数的对称轴为直线,当,即时,当时,取得最大值4,,解得,满足;当,即时,当时,取得最大值4,,解得,满足.故:实数的值为或.20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与平面内的一条直线平行.由题可证,则证得平面;(2)欲证线面垂直,则需证直线垂直于平面内的两条相交直线.连接,可证得,从而可证得平面;(3)由(2)可知,为三棱锥的高,平面为三棱锥的底面,应用椎体体积公式即可求解.【详解】(1)证明:分别是的中点,又平面,平面平面(2)如图,连接,,是的中点,同理又,又平面(3)由(2)可知,为三棱锥的高,且,.【点睛】本题考查线面平行,线面垂直的判定定理以及椎体体积公式的应用,考查空间想象能力与思维能力,属中档题.21、(1)(0,+∞)(2)[,+∞)【解析】(1)解指数不等式2x>2﹣x可得x>﹣x,运算即可得解;(2)由二次函数求最值可得函数g(x)的值域为,函数f(x)的值域为A=[,+∞),由题意可得A∩B≠,列不等式b+4运算即可得解.【详解】解:(1)因为f(x)>0⇔2x0,∴2x>2﹣x,∴x>﹣x,即x>0∴实数x的取值范围为(0,+∞)(2)设函数f(x),g(x)在区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东莞东莞日报社2025年招聘3名高层次人才笔试历年常考点试题专练附带答案详解
- 上饶2025年上饶市市直学校遴选132名教师笔试历年常考点试题专练附带答案详解
- 上海上海音乐厅2025年第四季度工作人员招聘4人笔试历年常考点试题专练附带答案详解
- 上海上海市气功研究所工作人员公开招聘笔试历年典型考点题库附带答案详解
- 上海上海交响乐团公开招聘5人笔试历年难易错考点试卷带答案解析
- 三亚2025年海南三亚市人民医院四川大学华西三亚医院招聘7人笔试历年典型考点题库附带答案详解
- 2025贵州磷化(集团)有限责任公司高层次人才引进27人笔试参考题库附带答案详解
- 2025海南琼海市城市投资运营有限公司社会招聘45人笔试参考题库附带答案详解
- 2025江西全南县公用市政建设集团有限公司招聘3人笔试参考题库附带答案详解
- 2025年长三角(宣城)产业投资有限公司招聘4人笔试参考题库附带答案详解
- 清华大学教师教学档案袋制度
- 公租房完整租赁合同范本
- GB/T 3098.5-2025紧固件机械性能第5部分:自攻螺钉
- 水电站压力管道课件
- 铁总建设201857号 中国铁路总公司 关于做好高速铁路开通达标评定工作的通知
- 孟州市浩轩塑业有限公司年产200吨塑料包装袋项目环评报告
- 卫生院消防安全演练方案篇
- 电焊机操作JSA分析表
- 落地式钢管脚手架工程搭拆施工方案
- 养老院健康档案模板
- 新竞争环境下的企业发展战略(培训讲座课件PPT)
评论
0/150
提交评论