2026届吉林一中 高二数学第一学期期末监测模拟试题含解析_第1页
2026届吉林一中 高二数学第一学期期末监测模拟试题含解析_第2页
2026届吉林一中 高二数学第一学期期末监测模拟试题含解析_第3页
2026届吉林一中 高二数学第一学期期末监测模拟试题含解析_第4页
2026届吉林一中 高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林一中高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.2.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-83.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.124.双曲线实轴长为()A.1 B.C.2 D.5.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.86.已知函数满足对于恒成立,设则下列不等关系正确是()A. B.C. D.7.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.40428.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交9.等差数列前项和,已知,,则的值是().A. B.C. D.10.已知等比数列的前项和为,若公比,则=()A. B.C. D.11.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.12.如图,D是正方体的一个“直角尖”O-ABC(OA,OB,OC两两垂直且相等)棱OB的中点,P是BC中点,Q是AD上的一个动点,连PQ,则当AC与PQ所成角为最小时,()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线的焦点与椭圆的右焦点重合,则实数m的值为______.14.计算:________15.已知焦点为F的抛物线的方程为,点Q的坐标为,点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为______.16.已知正数,满足.若恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是奇函数.(1)求的值;(2)若,求的值18.(12分)已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最值.19.(12分)已知函数.(1)求函数的单调区间;(2)求函数在上的最大值和最小值.20.(12分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.21.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.22.(10分)已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.2、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A3、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B4、B【解析】由双曲线的标准方程可求出,即可求双曲线的实轴长.【详解】由可得:,,即,实轴长,故选:B5、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B6、A【解析】由条件可得函数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则,∵,∴,∴函数在上为增函数,∵,∴,故,所以,C错,令(),则,当时,,当时,∴函数在区间上为增函数,在区间上为减函数,又,∴,∴,即,∴,故,所以,D错,,故,所以,A对,,故,所以,B错,故选:A.7、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.8、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.9、C【解析】由题意,设等差数列的公差为,则,故,故,故选10、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.11、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A12、C【解析】根据题意,建立空间直角坐标系,求得AC与PQ夹角的余弦值关于点坐标的函数关系,求得角度最小时点的坐标,即可代值计算求解结果.【详解】根据题意,两两垂直,故以为坐标原点,建立空间直角坐标系如下所示:设,则,不妨设点的坐标为,则,,则,又,设直线所成角为,则,则,令,令,则,令,则,此时.故当时,取得最大值,此时最小,点,则,故,则故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别求出椭圆和抛物线的焦点坐标即可出值.【详解】由椭圆方程可知,,,则,即椭圆的右焦点的坐标为,抛物线的焦点坐标为,∵抛物线的焦点与椭圆的右焦点重合,∴,即,故答案为:.14、【解析】根据无穷等比数列的求和公式直接即可求出答案.【详解】.故答案为:.15、##【解析】利用定义将所求距离之和的最小值问题,转化为的最小值问题.【详解】焦点F坐标为,抛物线准线为,如图,作垂直于准线于A,交y轴于B,.故答案为:16、【解析】利用基本不等式性质可得的最小值,由恒成立可得即可求出实数的取值范围.【详解】解:因为正数,满足,所以,当且仅当时,即时取等号因为恒成立,所以,解得.故实数的取值范围是.故答案填:.【点睛】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)4【解析】(1)根据奇函数的定义,代入化简得,进而可得的值;(2)设,可得,根据奇函数的性质得,进而可得结果.【详解】解:(1)因为是奇函数,所以,即,整理得,又,所以(2)设,因为,所以因为是奇函数,所以所以【点睛】本题主要考查了已知函数的奇偶性求参数的值,根据函数的奇偶性求函数的值,属于中档题.18、(1)(2)最小值为0,最大值为4【解析】(1)利用导数求得切线方程.(2)结合导数求得在区间上的最值.【小问1详解】,所以曲线在点处的切线方程为.【小问2详解】,所以在区间递增;在区间递减,,所以在区间上的最小值为,最大值为.19、(1)单调增区间,单调减区间(2)最大值,最小值【解析】根据导函数分析函数单调性,在闭区间内的最值【小问1详解】时,;时,单调增区间,单调减区间【小问2详解】由(1)可知,在上单调递增,在上单调递减,所以最大值为又;故最小值为020、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:可知直线AB的方程为y=x+2,设点A(x1,y1)、B(x2,y2),将直线AB的方程与抛物线的方程联立,求出y1+y2的值,利用抛物线的定义可求得|AB|的值.【小问1详解】由题意点M的轨迹是以F为焦点,直线l为准线的抛物线,所以,则p=4,所以动点M的轨迹方程是x2=8y;【小问2详解】由已知直线AB方程是y=x+2,设A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,则y1+y2=x1+x2+4=12,故|AB|=y1+y2+4=1621、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论