广东省汕头市潮阳新世界中英文学校2026届高二上数学期末调研试题含解析_第1页
广东省汕头市潮阳新世界中英文学校2026届高二上数学期末调研试题含解析_第2页
广东省汕头市潮阳新世界中英文学校2026届高二上数学期末调研试题含解析_第3页
广东省汕头市潮阳新世界中英文学校2026届高二上数学期末调研试题含解析_第4页
广东省汕头市潮阳新世界中英文学校2026届高二上数学期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市潮阳新世界中英文学校2026届高二上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.2.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.4.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.5.曲线在点处的切线方程是A. B.C. D.6.已知,,且,则()A. B.C. D.7.已知双曲线,则“”是“双曲线的焦距大于4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若的解集是,则等于()A.-14 B.-6C.6 D.149.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,第五层有15个球,…,各层球数之差:,,,,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51 B.68C.106 D.15710.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-211.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.212.椭圆:的左焦点为,椭圆上的点与关于坐标原点对称,则的值是()A.3 B.4C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.以点为圆心,且与直线相切的圆的方程是__________14.一支车队有10辆车,某天下午依次出发执行运输任务.第一辆车于14时出发,以后每间隔10分钟发出一辆车.假设所有的司机都连续开车,并都在18时停下来休息.截止到18时,最后一辆车行驶了____小时,如果每辆车行驶的速度都是60km/h,这个车队各辆车行驶路程之和为______千米15.抛物线上的点到其焦点的最短距离为_________.16.已知直线l的方向向量,平面的法向量,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求甲乙各投球一次,比赛结束的概率;(2)求甲获胜的概率18.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.19.(12分)如图在直三棱柱中,为的中点,为的中点,是中点,是与的交点,是与的交点.(1)求证:;(2)求证:平面;(3)求直线与平面的距离.20.(12分)如图,在四棱锥P-ABCD中,底面四边形ABCD为直角梯形,,,,O为BD的中点,,(1)证明:平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值21.(12分)某校高二年级共有男生490人和女生510人,现采用分层随机抽样的方法从该校高二年级中抽取100名学生,测得他们的身高数据(1)男生和女生应各抽取多少人?(2)若样本中男生和女生的平均身高分别为173.6、162.2厘米,请估计该校高二年级学生的平均身高22.(10分)已知椭圆左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A2、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B3、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.4、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.5、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.6、D【解析】利用空间向量共线的坐标表示可求得、的值,即可得解.【详解】因为,则,所以,,,因此,.故选:D7、A【解析】先找出“双曲线的焦距大于4”的充要条件,再进行判断即可【详解】若的焦距,则;若,则故选:A8、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.9、C【解析】对高阶等差数列按其定义逐一进行构造数列,直到出现一般等差数列为止,再根据其递推关系进行求解.【详解】现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差数列,所以,故选:C10、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.11、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B12、D【解析】令椭圆C的右焦点,由已知条件可得四边形为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C的右焦点,依题意,线段与互相平分,于是得四边形为平行四边形,因此,而椭圆:的长半轴长,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用14、①.2.5####②.1950【解析】通过分析,求出最后一辆车的出发时间,从而求出最后一辆车的行驶时间,这10辆车的行驶路程可以看作等差数列,利用等差数列求和公式进行求解.【详解】因为,所以最后一辆车出发时间为15时30分,则最后一辆车行驶时间为18-15.5=2.5小时,第一辆车行程为km,且从第二辆车开始,每辆车都比前一辆少走km,这10辆车的行驶路程可以看作首项为240,公差为-10的等差数列,则10辆车的行程路程之和为(km).故答案为:2.5,195015、1【解析】设出抛物线上点的坐标,利用两点间距离公式建立函数关系,借助函数性质计算作答.【详解】抛物线的焦点,设点为抛物线上任意一点,于是有,当且仅当时取“=”,所以当,即点P为抛物线顶点时,取最小值1.故答案为:116、【解析】由,可得∥,从而可得,代入坐标列方程可求出,从而可求出【详解】因为直线l的方向向量,平面的法向量,,所以∥,所以存在唯一实数,使,所以,所以,解得,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设事件“甲在第次投篮投中”,设事件“乙在第次投篮投中”,记“甲乙各投球一次,比赛结束”为事件,则,利用独立事件和互斥事件的概率公式,即得解(2)记“甲获胜”为事件,由题意,根据概率的加法公式和独立事件的概率公式,即得解【小问1详解】设事件“甲在第次投篮投中”,其中设事件“乙在第次投篮投中”,其中则,,其中记“甲乙各投球一次,比赛结束”为事件,,事件与事件相互独立根据事件独立性定义得:甲乙各投球一次,比赛结束的概率为【小问2详解】记“甲获胜”为事件,事件、事件、事件彼此互斥根据概率加法公式和事件独立性定义得:甲获胜的概率为18、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.19、(1)证明见解析(2)证明见解析(3)【解析】(1)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过线面垂直证明,法三:根据三垂线证明;(2)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过面面平行证明线面平行;(3)法一:通过建立空间直角坐标系,运用向量方法求解,法二:运用等体积法求解.【小问1详解】证明:法一:在直三棱柱中,因为,以点为坐标原点,方向分别为轴正方向建立如图所示空间直角坐标系.因为,所以,所以所以,所以.法二:连接,在直三棱柱中,有面,面,所以,又,则,因为,所以面因为面,所以因为,所以四边形为正方形,所以因为,所以面因为面,所以.法三:用三垂线定理证明:连接,在直三棱柱中,有面因为面,所以,又,则,因为,所以面所以在平面内的射影为,因为四边形为正方形,所以,因此根据三垂线定理可知【小问2详解】证明:法一:因为为的中点,为的中点,为中点,是与的交点,所以、,依题意可知为重心,则,可得所以,,设为平面的法向量,则即取得则平面的一个法向量为.所以,则,因为平面,所以平面.法二:连接.在正方形中,为的中点,所以且,所以四边形是平行四边形,所以又为中点,所以四边形是矩形,所以且因为且,所以,所以四边形为平行四边形,所以.因为,平面平面平面平面,所以平面平面,平面,所以平面【小问3详解】法一:由(2)知平面的一个法向量,且平面,所以到平面的距离与到平面的距离相等,,所以,所以点到平面的距离所以到平面的距离为法二:因为分别为和中点,所以为的重心,所以,所以到平面的距离是到平面距离的.取中点则,又平面平面,所以平面,所以到平面的距离与到平面的距离相等.设点到平面的距离为,由得,又,所以,所以到平面的距离是,所以到平面的距离为.20、(1)见解析(2)【解析】(1)连接,利用勾股定理证明,又可证明,根据线面垂直的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面和平面的法向量,由向量的夹角公式求解即可小问1详解】证明:如图,连接,在中,由,可得,因为,,所以,,因为,,,则,故,因为,,,平面,则平面;【小问2详解】解:由(1)可知,,,两两垂直,以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,0,,,2,,,0,,所以,则,,,又,设平面的法向量为,则,令,则,,故,设平面的法向量为,因为,所以,令,则,,故,所以,故平面与平面所成锐二面角的余弦值为21、(1)应抽取男生49人,女生51人;(2).【解析】(1)利用分层抽样计算男生和女生应抽取的人数;(2)利用平均数的计算公式计算求解.【小问1详解】解:应抽取男生人,女生应抽取100-49=51人.【小问2详解】解:估计该校高二年级学生的平均身高为.22、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论