广西田阳高中2026届数学高二上期末检测试题含解析_第1页
广西田阳高中2026届数学高二上期末检测试题含解析_第2页
广西田阳高中2026届数学高二上期末检测试题含解析_第3页
广西田阳高中2026届数学高二上期末检测试题含解析_第4页
广西田阳高中2026届数学高二上期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西田阳高中2026届数学高二上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,则抛物线的焦点到其准线的距离为()A. B.C. D.2.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.3.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.34.记为等差数列的前n项和,有下列四个等式,甲:;乙:;丙:;丁:.如果只有一个等式不成立,则该等式为()A.甲 B.乙C.丙 D.丁5.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定6.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.7.在空间直角坐标系下,点关于平面的对称点的坐标为()A. B.C. D.8.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.79.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.10.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.911.直线经过两点,那么其斜率为()A. B.C. D.12.若圆C与直线:和:都相切,且圆心在y轴上,则圆C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是公差不为零的等差数列,,,成等比数列,第1,2项与第10,11项的和为68,则数列的通项公式是________.14.已知内角A,B,C的对边为a,b,c,已知,且,则c的最小值为__________.15.已知向量,,且,则实数______.16.万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同、扁平程度相同的椭圆.已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为________cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆的短轴端点为、,且,椭圆C的离心率,点,过点P的动直线l椭圆C交于不同的两点M、N与,均不重合),连接,,交于点T(1)求椭圆C的方程;(2)求证:当直线l绕点P旋转时,点T总在一条定直线上运动;(3)是否存在直线l,使得?若存在,求出直线l的方程;若不存在,请说明理由18.(12分)在如图所示的几何体中,四边形是平行四边形,,,,四边形是矩形,且平面平面,,点是线段上的动点(1)证明:;(2)设平面与平面的夹角为,求的最小值19.(12分)已知为等差数列,是各项均为正数的等比数列的前n项和,,,,在①;②;③.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择的第一个解答计分)(1)求数列和的通项公式;(2)求数列的前n项和.20.(12分)已知等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,用符号表示不超过x的最大数,当时,求的值.21.(12分)如图,已知多面体,,,均垂直于平面,,,,(1)证明:平面;(2)求直线平面所成的角的正弦值22.(10分)已知命题p:函数有零点;命题,(1)若命题p,q均为真命题,求实数a的取值范围;(2)若为真命题,为假命题,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将抛物线方程化为标准方程,由此确定的值即可.【详解】由可得抛物线标准方程为:,,抛物线的焦点到其准线的距离为.故选:D.2、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.3、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.4、D【解析】分别假设甲、乙、丙、丁不成立,验证得到答案【详解】设数列的公差为,若甲不成立,则,由①,③可得,此时与②矛盾;A错,若乙不成立,则,由①,③可得,此时;与②矛盾;B错,若丙不成立,则,由①,③可得,此时;与②矛盾;C错,若丁不成立,则,由①,③可得,此时;,D对,故选:D.5、B【解析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.6、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.7、C【解析】根据空间坐标系中点的对称关系求解【详解】点关于平面的对称点的坐标为,故选:C8、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.9、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.10、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题11、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B12、B【解析】首先求出两平行直线间的距离,即可求出圆的半径,设圆心坐标为,,利用圆心到直线的距离等于半径得到方程,求出的值,即可得解;【详解】解:因为直线:和:的距离,由圆C与直线:和:都相切,所以圆的半径为,又圆心在轴上,设圆心坐标为,,所以圆心到直线的距离等于半径,即,所以或(舍去),所以圆心坐标为,故圆的方程为;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用基本量结合已知列方程组求解即可.【详解】设等差数列的公差为由题可知即因为,所以解得:所以.故答案为:14、【解析】先利用正弦定理边化角式子,得到,再利用正弦定理求出,根据与的关系,求得,即可求得c的最小值.【详解】,即,又,当最大时,即,最小,且为由正弦定理得:,当时,c的最小值为故答案为:【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)同时出现两个自由角(或三个自由角)时,要用到.15、【解析】利用向量平行的条件直接解出.【详解】因为向量,,且,所以,解得.故答案为:.16、20【解析】求出大椭圆的离心率等于小椭圆的离心率,然后求解小椭圆的长轴长【详解】在大椭圆中,,,则,.因为两椭圆扁平程度相同,所以离心率相等,所以在小椭圆中,,结合,得,所以小椭圆的长轴长为20.故填:20.【点睛】本题考查椭圆的简单性质的应用,对椭圆相似则离心率相等这一基础知识的考查三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析;(3)不存在直线l,使得成立,理由见解析.【解析】(1)根据题意,列出方程组,求得,即可求得椭圆的方程;(2)设直线的方程为,联立方程组求得,设,根据和在同一条直线上,列出方程求得的值,即可求解;(3)设直线的为,把转化为,联立方程组求得,代入列方程,求得,即可得到结论.【小问1详解】解:由题意可得,解得,所以所求椭圆的方程为.【小问2详解】解:由题意,因为直线过点,可设直线的方程为,,联立方程组,整理得,可得,因为直线与椭圆有两个交点,所以,解得,设,因为在同一条直线上,则,①又由在同一条直线上,则,②由①+②3所以,整理得,解得,所以点在直线,即当直线l绕点P旋转时,点T总在一条定直线上运动.【小问3详解】解:由(2)知,点在直线上运动,即,设直线的方程为,且,又由且,可得,即,联立方程组,整理得,可得,代入可得,解得,即,此时直线的斜率不存在,不合题意,所以不存在直线l,使得成立.18、(1)证明见解析;(2).【解析】(1)要证,只需证平面,只需证(由勾股定理可证),,只需证平面,只需证(由平面平面可证),(由可证),即可证明结论.(2)以为原点,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系写出点与点的坐标由于轴,可设,可得出与的坐标设为平面的法向量,求出法向量.是关于的一个式子,求出的取值范围,即可求出的最小值【小问1详解】在中,,,,所以,所以所以是等腰直角三角形,即因为,所以又因为平面平面,平面平面,,所以平面又平面,所以又因为,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因为,,所以,所以又,,平面所以平面又平面,所以【小问2详解】以为原点,所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系则,因为轴,可设,可求得,设为平面的法向量则令,解得,所以又因为是平面的法向量所以,因为,所以所以当时,取到最小值19、(1)无论选择哪个条件答案均为;(2).【解析】(1)先根据题设条件求解,然后根据选择的条件求解;(2)先求,然后利用分组求和的方法求解.【小问1详解】设的公差为,因为,;所以,解得,所以.选①:设的公比为,则;由题意得,因为,所以,解得或(舍);所以.选②:由,当时,,因为,所以;当时,,整理得;即是首项和公比均为2的等比数列,所以.选③:因为,,所以,解得;所以.【小问2详解】由(1)得;所以.20、(1)(2)9【解析】(1)首先根据已知条件分别求出的首项和公差,然后利用等差数列的通项公式求解即可;(2)首先利用等差数列求和公式求出,然后利用裂项相消法和分组求和法求出,进而可求出的通项公式,最后利用等差数列求和公式求解即可.【小问1详解】不妨设等差数列的公差为,故,,解得,,从而,即的通项公式为.【小问2详解】由题意可知,,所以,故,因为当时,;当时,,所以,由可知,,即,解得,即值为9.21、(1)证明见解析;(2)【解析】(1)由已知条件可得,,则,,再利用线面垂直的判定定理可证得结论;(2)如图,过点作,交直线于点,连接,可证得平面,从而是与平面所成的角,然后在求解即可【详解】(1)证明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如图,过点作,交直线于点,连接由平面,平面,得平面平面,由,得平面,所以是与平面所成的角由,,得,,所以,故因此,直线与平面所成的角的正弦值是【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点作,交直线于点,连接,然后结合条件可证得是与平面所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题22、(1);(2).【解析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论