北京海淀区2026届数学高三上期末经典试题含解析_第1页
北京海淀区2026届数学高三上期末经典试题含解析_第2页
北京海淀区2026届数学高三上期末经典试题含解析_第3页
北京海淀区2026届数学高三上期末经典试题含解析_第4页
北京海淀区2026届数学高三上期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京海淀区2026届数学高三上期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.73.已知是虚数单位,则()A. B. C. D.4.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.5.已知函数的图象如图所示,则下列说法错误的是()A.函数在上单调递减B.函数在上单调递增C.函数的对称中心是D.函数的对称轴是6.设等比数列的前项和为,则“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要7.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,8.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则()A.2或 B.3或 C.4或 D.5或9.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为()A. B. C. D.10.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.11.在平行四边形中,若则()A. B. C. D.12.某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,,,,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为()A.8年 B.9年 C.10年 D.11年二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.14.设满足约束条件,则的取值范围是______.15.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.16.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.18.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.19.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.20.(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.21.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.22.(10分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.2、B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.3、B【解析】

根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.4、C【解析】

由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.5、B【解析】

根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.6、A【解析】

首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.7、D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.8、C【解析】

先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.9、C【解析】

利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.10、C【解析】

由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.11、C【解析】

由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,

平行四边形中,,

,,,

因为,

所以

,

,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).12、D【解析】

根据样本中心点在回归直线上,求出,求解,即可求出答案.【详解】依题意在回归直线上,,由,估计第年维修费用超过15万元.故选:D.【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.【详解】解:由函数,可得的增区间为,,时,,,时,,当关于的不等式的解集为,,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点.综上可得的所有值的和为1.故答案为:1.【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.14、【解析】

作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.【详解】作出满足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.15、【解析】

依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【详解】解:依题意可得、、、四点共圆,所以因为,所以,,所以三角形为正三角形,则,,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,,且面面,面所以面,所以外接球的半径所以故答案为:【点睛】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.16、60【解析】

根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,,,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】

(1)取中点,连结,证明平面得到答案.(2)如图所示,建立空间直角坐标系,为平面的一个法向量,平面的一个法向量为,计算夹角得到答案.【详解】(1)取中点,连结,,,,,为直角,,平面,平面,∴面面.(2)如图所示,建立空间直角坐标系,则,可取为平面的一个法向量.设平面的一个法向量为.则,其中,,不妨取,则..为锐二面角,∴二面角的余弦值为.【点睛】本题考查了面面垂直,二面角,意在考查学生的计算能力和空间想象能力.18、(1);(2).【解析】

(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,,由,得,因此,函数的单调递增区间为;(2),,,,,,.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.19、(1);(2).【解析】

(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.20、(1);(2)【解析】试题分析:(1)将绝对值不等式两边平方,化为二次不等式求解.(2)将问题化为分段函数问题,通过分类讨论并根据恒成立问题的解法求解即可.试题解析:整理得解得①②解得③,且无限趋近于4,综上的取值范围是21、(Ⅰ),曲线(Ⅱ)【解析】试题分析:(1)消去参数可得直线的直角坐标系方程,由可得曲线的直角坐标方程;(2)将(为参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论