2026届山东省德州市平原中英文实验中学高一数学第一学期期末达标检测模拟试题含解析_第1页
2026届山东省德州市平原中英文实验中学高一数学第一学期期末达标检测模拟试题含解析_第2页
2026届山东省德州市平原中英文实验中学高一数学第一学期期末达标检测模拟试题含解析_第3页
2026届山东省德州市平原中英文实验中学高一数学第一学期期末达标检测模拟试题含解析_第4页
2026届山东省德州市平原中英文实验中学高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省德州市平原中英文实验中学高一数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形中,,根据这些信息,可得()A. B.C. D.2.下列大小关系正确的是A. B.C. D.3.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.4.的零点所在区间为()A. B.C. D.5.若sinα=,α是第二象限角,则sin(2α+)=()A. B.C. D.6.已知角的顶点在原点,始边与轴的正半轴重合,终边经过点,则()A. B.C. D.7.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B.C. D.8.化简()A. B.C. D.9.已知函数是上的偶函数,且在区间上是单调递增的,,,是锐角三角形的三个内角,则下列不等式中一定成立的是A. B.C. D.10.已知函数的部分图象如图所示,下列说法错误的是()A.B.f(x)的图象关于直线对称C.f(x)在[-,-]上单调递减D.该图象向右平移个单位可得的图象二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为___12.已知集合,,则集合中子集个数是____13.函数的定义域为_____________________14.已知直线与圆相切,则的值为________15.已知,g(x)=x+t,设,若当x为正整数时,恒有h(5)≤h(x),则实数t的取值范围是_____________.16.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,计算:(1);(2).18.已知函数,其中(1)判断函数的奇偶性并证明;(2)求函数的值域19.某学校有1200名学生,随机抽出300名进行调查研究,调查者设计了一个随机化装置,这是一个装有大小、形状和质量完全相同的10个红球,10个绿球和10个白球的袋子.调查中有两个问题:问题1:你的阳历生日月份是不是奇数?问题2:你是否抽烟?每个被调查者随机从袋中摸出1个球(摸出后再放回袋中).若摸到红球就如实回答第一个问题,若摸到绿球,则不回答任何问题;若摸到白球,则如实回答第二个问题.所有回答“是”的调查者只需往一个盒子中放一个小石子,回答“否”的被调查者什么也不用做.最后收集回来53个小石子,估计该学校吸烟的人数有多少?20.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值21.已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意,结合二倍角余弦公式、平方关系求得,再根据诱导公式即可求.【详解】由题设,可得,,所以,又,所以.故选:B2、C【解析】根据题意,由于那么根据与0,1的大小关系比较可知结论为,选C.考点:指数函数与对数函数的值域点评:主要是利用指数函数和对数函数的性质来比较大小,属于基础题3、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.4、C【解析】根据零点存在性定理进行判断即可【详解】,,,,根据零点存在性定理可得,则的零点所在区间为故选C【点睛】本题考查零点存性定理,属于基础题5、D【解析】根据,求出的值,再将所求式子展开,转化成关于和的式子,然后代值得出结果【详解】因为且为第二象限角,根据得,,再根据二倍角公式得原式=,将,代入上式得,原式=故选D【点睛】本题考查三角函数给值求值,在已知角的取值范围时可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式将目标式转化成关于和的式子,然后代值求解就能得出结果6、D【解析】先利用三角函数的恒等变换确定点P的坐标,再根据三角函数的定义求得答案.【详解】,,即,则,故选:D.7、C【解析】如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选:C.8、D【解析】利用辅助角公式化简即可.【详解】.故选:D9、C【解析】因为是锐角的三个内角,所以,得,两边同取余弦函数,可得,因为在上单调递增,且是偶函数,所以在上减函数,由,可得,故选C.点睛:本题考查了比较大小问题,解答中熟练推导抽象函数的图象与性质,合理利用函数的单调性进行比较大小是解答的关键,着重考查学生的推理与运算能力,本题的解答中,根据锐角三角形,得出与的大小关系是解答的一个难点.10、C【解析】先根据图像求出即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.【详解】根据函数的部分图象,可得所以,故A正确;利用五点法作图,可得,可得,所以,令x,求得,为最小值,故函数的图象关于直线对称,故B正确:当时,,函数f(x)没有单调性,故C错误;把f(x)的图象向右平移个单位可得的图象,故D正确故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】解不等式组即得解.【详解】解:由题得且,所以函数的定义域为.故答案为:12、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.13、【解析】,区间为.考点:函数的定义域14、2【解析】直线与圆相切,圆心到直线的距离等于半径,列出方程即可求解的值【详解】依题意得,直线与圆相切所以,即,解得:,又,故答案为:215、[-5,-3]【解析】作出的图象,如图,设与的交点横坐标为,则在时,总有,所以当时,有,,由,得;当当时,有,,由,得,综上,,故答案为:.16、【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解.【详解】由题意知,,,,当时,,,即,,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由同角三角函数关系得,再代入化简得结果(2)利用分母,将式子弦化切,再代入化简得结果试题解析:解:(Ⅰ)∵tanα=3,(Ⅱ)∵tanα=3,∴sinα•cosα=18、(1)是偶函数,证明见解析(2)【解析】(1)由对数的运算得出,再由定义证明即可;(2)根据基本不等式结合对数函数的单调性得出函数的值域【小问1详解】是偶函数,的定义域为R∵,∴,∴是偶函数【小问2详解】∵,当且仅当时取等号,∴∴的值域为19、36【解析】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是,从而可得回答各个问题以及不回答问题的人数,进而可得回答第一个问题是“是”的人数,根据石子数得出100人中抽烟的人数,从而估计出该学校吸烟的人数.【详解】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是.即我们期望大约有人回答了第一个问题,人不回答任何问题,人回答了第二个问题.在回答阳历生日月份是奇数的概率是.因而回答第一个问题的100人中,大约有50人回答了“是”.所以我们能推出,在回答第二个问题的100人中,大约有3人回答了“是”.即估计该学校大约有3%的学生抽烟,也就是全校大约有36人抽烟.【点睛】本题考查了概率的应用,解题的关键是理解题干各个量之间的关系,属于基础题.20、(1)(2)或(3)【解析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.21、(1),(2)在区间(0,0.5)上是单调递减的【解析】(Ⅰ)∵函数是奇函数,则即∴------------------------2分由得解得∴,.-----------------------------------------------

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论