重庆万州沙河中学2026届高一上数学期末检测模拟试题含解析_第1页
重庆万州沙河中学2026届高一上数学期末检测模拟试题含解析_第2页
重庆万州沙河中学2026届高一上数学期末检测模拟试题含解析_第3页
重庆万州沙河中学2026届高一上数学期末检测模拟试题含解析_第4页
重庆万州沙河中学2026届高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆万州沙河中学2026届高一上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数若函数有四个零点,零点从小到大依次为则的值为()A.2 B.C. D.2.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④3.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.4.设集合,则中元素的个数为()A.0 B.2C.3 D.45.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.6.已知点是第三象限的点,则的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知条件,条件,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切10.某集团校为调查学生对学校“延时服务”的满意率,想从全市3个分校区按学生数用分层随机抽样的方法抽取一个容量为的样本.已知3个校区学生数之比为,如果最多的一个校区抽出的个体数是60,那么这个样本的容量为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数12.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.13.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调14.已知函数f(x)是定义在R上的奇函数,当时,,则函数的零点个数为______15.已知指数函数(且)在区间上的最大值是最小值的2倍,则______16.若直线l在x轴上的截距为1,点到l的距离相等,则l的方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数,若实数满足,则称是的不动点.现设(1)当时,分别求与的所有不动点;(2)若与均恰有两个不动点,求a的取值范围;(3)若有两个不动点,有四个不动点,证明:不存在函数满足18.已知(1)若在第三象限,求的值(2)求的值19.已知圆C经过点A(0,0),B(7,7),圆心在直线上(1)求圆C的标准方程;(2)若直线l与圆C相切且与x,y轴截距相等,求直线l的方程20.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值21.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数有四个零点,即与图象有4个不同交点,可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果.【详解】作出函数的图象如图,函数有四个零点,即与的图象有4个不同交点,不妨设四个交点横坐标满足,则,,,可得,由,得,则,可得,即,,故选C.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.2、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D3、B【解析】根据二次函数的单调性可得出关于的不等式,即可得解.【详解】因为函数在区间上单调递增,则,解得.故选:B.4、B【解析】先求出集合,再求,最后数出中元素的个数即可.【详解】因集合,,所以,所以,则中元素的个数为2个.故选:B5、C【解析】根据函数零点的存在性定理可得函数零点所在的区间【详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【点睛】本题主要考查函数的零点的存在性定理的应用,属于基础题6、D【解析】根据三角函数在各象限的符号即可求出【详解】因为点是第三象限的点,所以,故的终边位于第四象限故选:D7、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B8、B【解析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【点睛】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.9、C【解析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离10、B【解析】利用分层抽样比求解.【详解】因为样本容量为,且3个校区学生数之比为,最多的一个校区抽出的个体数是60,所以,解得,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义12、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:213、(答案不唯一)【解析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.14、10【解析】将原函数的零点转化为方程或的根,再作出函数y=f(x)的图象,借助图象即可判断作答.【详解】函数的零点即方程的根,亦即或的根,画出函数y=f(x)的图象和直线,如图所示,观察图象得:函数y=f(x)的图象与x轴,直线各有5个交点,则方程有5个根,方程也有5个根,所以函数的零点有10个.故答案为:1015、或2【解析】先讨论范围确定的单调性,再分别进行求解.【详解】①当时,,得;②当时,,得,故或2故答案为:或2.16、或【解析】考虑斜率不存在和存在两种情况,利用点到直线距离公式计算得到答案.【详解】显然直线轴时符合要求,此时的方程为.当直线l的斜率存在时,设直线l的斜率为k,则l的方程为,即.∵A,B到l的距离相等∴,∴,∴,∴直线l的方程为.故答案为或【点睛】本题考查了点到直线的距离公式,忽略掉斜率不存在的情况是容易犯的错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)见详解.【解析】【小问1详解】因为,所以即,所以,所以的不动点为;解,,所以,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,所以,所以的不动点为;【小问2详解】由得,由、得,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,因为与均恰有两个不动点,所以①或②且和有同根,由①得,②中两方程相减得,所以,故,综上,a的取值范围是;【小问3详解】(3)设的不动点为,的不动点为,所以,设,则,所以,所以是的不动点,同理,也是的不动点,只能,假设存在,则或,因为过点,所以,否则矛盾,且,否则,所以一定存在,与均不同,所以,所以,所以有另外不动点,矛盾,故不存在函数满足18、(1);(2)-3.【解析】直接利用三角函数关系式的恒等变换和同角三角函数关系式的应用求出结果直接利用三角函数关系式的恒等变换和同角三角函数关系式的应用求出结果【详解】由于所以,又在第三象限,故:,,则:由于:,所以:【点睛】本题主要考查了同角三角函数关系式应用和诱导公式的应用,属于基础题19、(1)(x﹣3)2+(y﹣4)2=25(2)yx或x+y+57=0或x+y﹣57=0【解析】(1)设圆心C(a,b),半径为r,然后根据条件建立方程组求解即可;(2)分直线l经过原点、直线l不经过原点两种情况求解即可.【小问1详解】根据题意,设圆心C(a,b),半径为r,标准方程为(x﹣a)2+(y﹣b)2=r2,圆C经过点A(0,0),B(7,7),圆心在直线上,则有,解可得,则圆C的标准方程为(x﹣3)2+(y﹣4)2=25,小问2详解】若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①直线l经过原点,设直线l的方程为y=kx,则有5,解得k,此时直线l的方程为yx;②直线l不经过原点,设直线l的方程为x+y﹣m=0,则有5,解得m=7+5或7﹣5,此时直线l方程为x+y+57=0或x+y﹣57=0;综合可得:直线l的方程为yx或x+y+57=0或x+y﹣57=020、(1)证明见解析;(2)的最大值为,最小值为.【解析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,在上是增函数,同理,任取时,,其中,故,即且,故,即,所以在上是减函数,故在上是减函数,在上是增函数,又,,所以的最大值为,最小值为.【点睛】方法点睛:利用定义证明函数单调性方法:(1)取值:设是该区间内的任意两个值,且;(2)作差变形:即作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论