版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省汉中市汉台区县2026届高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.2.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.3.已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+5.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.6.设直线的倾斜角为,且,则满足A. B.C. D.7.已知函数的部分图象如图所示,且经过点,则()A.关于点对称B.关于直线对称C.为奇函数D.为偶函数8.已知点,在双曲线上,线段的中点,则()A. B.C. D.9.将一个表面积为的球用一个正方体盒子装起来,则这个正方体盒子的最小体积为()A. B.C. D.10.设,直线与直线平行,则()A. B.C. D.11.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.12.已知直线的一个方向向量,平面的一个法向量,若,则()A.1 B.C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.14.如图是一个无盖的正方体盒子展开图,A,B,C,D是展开图上的四点,BD则在正方体盒子中,AD与平面ABC所成角的正弦值为___________.15.在平行六面体中,点P是AC与BD的交点,若,且,则___________.16.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图在直三棱柱中,为的中点,为的中点,是中点,是与的交点,是与的交点.(1)求证:;(2)求证:平面;(3)求直线与平面的距离.18.(12分)某高中招聘教师,首先要对应聘者的简历进行筛选,简历达标者进入面试,面试环节应聘者要回答3道题,第一题为教育心理学知识,答对得4分,答错得0分,后两题为学科专业知识,每道题答对得3分,答错得0分(1)甲、乙、丙、丁、戊来应聘,他们中仅有3人的简历达标,若从这5人中随机抽取3人,求这3人中恰有2人简历达标的概率;(2)某进入面试的应聘者第一题答对的概率为,后两题答对的概率均为,每道题答对与否互不影响,求该应聘者的面试成绩X的分布列及数学期望19.(12分)从①,②,③,这三个条件中任选一个,补充在下面问题中并作答:已知等差数列公差大于零,且前n项和为,,______,,求数列的前n项和.(注:如果选择多个条件分别解答,那么按照第一个解答计分)20.(12分)已知椭圆的长轴长是,以其短轴为直径的圆过椭圆的左右焦点,.(1)求椭圆E的方程;(2)过椭圆E左焦点作不与坐标轴垂直的直线,交椭圆于M,N两点,线段MN的垂直平分线与y轴负半轴交于点Q,若点Q的纵坐标的最大值是,求面积的取值范围.21.(12分)已知椭圆上的点到椭圆焦点的最大距离为3,最小距离为1(1)求椭圆的标准方程;(2)已知,分别是椭圆的左右顶点,是椭圆上异于,的任意一点,直线,分别交轴于点,,求的值22.(10分)如图,四棱锥中,平面,∥,,,为上一点,平面(Ⅰ)求证:∥平面;(Ⅱ)若,求点D到平面EMC的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.2、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B3、B【解析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.4、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B5、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D6、D【解析】因为,所以,,,,故选D7、D【解析】根据图象求得函数解析式,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,可得,根据图形走势,可得,解得,令,可得,所以,由,所以A不正确;由,可得不是函数的对称轴,所以B不正确;由,此时函数为非奇非偶函数,所以C不正确;由为偶函数,所以D正确.故选:D.8、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D9、C【解析】求出球的半径,要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,从而可得出答案.【详解】解:设球的半径为,则,得,故该球的半径为11cm,若要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,即22cm,所以这个正方体盒子的最小体积为.故选:C.10、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C11、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.12、D【解析】由向量平行充要条件代入解之即可解决.【详解】由,可知,则有,解之得故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.14、##【解析】先复原正方体,再构造线面角后可求正弦值.【详解】复原后的正方体如图所示,设所在面的正方形的余下的一个顶点为,连接,则平面,故为AD与平面ABC所成角,而,故为AD与平面ABC所成角的正弦值为.故答案为:.15、【解析】由向量的运算法则,求得,根据,结合向量的数量积的运算,即可求解.【详解】由题意可得,,则,故.故答案为:16、2##【解析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析(3)【解析】(1)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过线面垂直证明,法三:根据三垂线证明;(2)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过面面平行证明线面平行;(3)法一:通过建立空间直角坐标系,运用向量方法求解,法二:运用等体积法求解.【小问1详解】证明:法一:在直三棱柱中,因为,以点为坐标原点,方向分别为轴正方向建立如图所示空间直角坐标系.因为,所以,所以所以,所以.法二:连接,在直三棱柱中,有面,面,所以,又,则,因为,所以面因为面,所以因为,所以四边形为正方形,所以因为,所以面因为面,所以.法三:用三垂线定理证明:连接,在直三棱柱中,有面因为面,所以,又,则,因为,所以面所以在平面内的射影为,因为四边形为正方形,所以,因此根据三垂线定理可知【小问2详解】证明:法一:因为为的中点,为的中点,为中点,是与的交点,所以、,依题意可知为重心,则,可得所以,,设为平面的法向量,则即取得则平面的一个法向量为.所以,则,因为平面,所以平面.法二:连接.在正方形中,为的中点,所以且,所以四边形是平行四边形,所以又为中点,所以四边形是矩形,所以且因为且,所以,所以四边形为平行四边形,所以.因为,平面平面平面平面,所以平面平面,平面,所以平面【小问3详解】法一:由(2)知平面的一个法向量,且平面,所以到平面的距离与到平面的距离相等,,所以,所以点到平面的距离所以到平面的距离为法二:因为分别为和中点,所以为的重心,所以,所以到平面的距离是到平面距离的.取中点则,又平面平面,所以平面,所以到平面的距离与到平面的距离相等.设点到平面的距离为,由得,又,所以,所以到平面的距离是,所以到平面的距离为.18、(1)(2)分布列见解析;期望为【解析】(1)根据古典概型的概率公式即可求出;(2)根据题意可知,随机变量X的所有可能取值为0,3,4,6,7,10,再利用相互独立事件的概率乘法公式分别求出对应的概率,列出分布列即可求出数学期望【小问1详解】从这5人中随机抽取3人,恰有2人简历达标的概率为【小问2详解】由题可知,X的所有可能取值为0,3,4,6,7,10,则,,,,,.故X的分布列为:X0346710P所以19、;【解析】将条件①②③转化为的形式,列方程组,并求解,写出的通项公式,从而表示出,利用裂项相消法求和.【详解】选①:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选②:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选③:设等差数列首项为,公差为,因为,,所以,所以,所以,所以【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列的和或差数列的求和20、(1);(2).【解析】(1)根据给定条件结合列式计算即可作答.(2)设出直线MN的方程,与椭圆方程联立并结合已知求出m的范围,再借助韦达定理求出面积函数,利用函数单调性计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为.【小问2详解】由(1)知,椭圆E左焦点为,设过椭圆E左焦点的直线为(存在且不为0),由消去x得,,设,则,线段的中点为,因此线段的垂直平分线为,由得的纵坐标为,依题意,且,解得,由(1)知,,,令,在上单调递减,当,即时,,当,即时,,所以面积的取值范围.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积21、(1);(2)-1.【解析】(1)根据椭圆的性质进行求解即可;(2)根据直线的方程,结合平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由题意得,,,所以,椭圆.【小问2详解】由题意可知,,设,则,直线,直线分别令得,,,.【点睛】关键点睛:运用平面向量数量积的坐标表示公式进行求解是解题的关键.22、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)运用线面平行的判定定理证明;(Ⅱ)借助体积相等建立方程求解即可【详解】(Ⅰ)证明:取的中点,连接,因为,所以,又因为平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋招:南通建工集团试题及答案
- 2026秋招:蚂蚁科技试题及答案
- 2026秋招:金陵饭店集团笔试题及答案
- 2026秋招:江西盐业集团面试题及答案
- 2026秋招:江苏粮食集团面试题及答案
- 2026秋招:吉林水务投资集团笔试题及答案
- 2025自然语言处理工程师招聘题库及答案
- 2026美涂士投资控股公司招聘面试题及答案
- 2026美的集团校招面试题及答案
- 做账实操-旅行社门店公司会计成本核算报表
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全风险分级管控与隐患排查治理标准》
- 2023年西藏中考数学真题试卷及答案
- 1春《寒假新启航五年级》参考答案
- 猪肉配送投标方案(完整技术标)
- GM公司过程控制计划审核表
- MSA-测量系统分析模板
- 《国共合作与北伐战争》优课一等奖课件
- YY/T 0729.3-2009组织粘合剂粘接性能试验方法第3部分:拉伸强度
- GB/T 5187-2008铜及铜合金箔材
- GB/T 26218.1-2010污秽条件下使用的高压绝缘子的选择和尺寸确定第1部分:定义、信息和一般原则
- 农民工讨薪突发事件应急预案
评论
0/150
提交评论