版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省枣阳市白水高级中学2026届数学高二上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且,那()A.19 B.31C.52 D.1042.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.13.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.4.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;5.若直线:与直线:平行,则a的值是()A.1 B.C.或6 D.或76.命题“,”的否定是A, B.,C., D.,7.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.8.函数的图像大致是()A. B.C. D.9.命题“”的否定是()A. B.C. D.10.倾斜角为120°,在x轴上截距为-1的直线方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.12.已知全集,集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为______.14.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______15.设,,若将函数的图像向左平移个单位能使其图像与原图像重合,则正实数的最小值为___________.16.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为F,点在抛物线上.(1)求抛物线的标准方程;(2)过点的直线交抛物钱C于A,B两点,O为坐标原点,记直线OA,OB的斜率分别,,求证:为定值.18.(12分)给定函数.(1)判断函数f(x)的单调性,并求出f(x)的极值;(2)画出函数f(x)的大致图象,无须说明理由(要求:坐标系中要标出关键点);(3)求出方程的解的个数.19.(12分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.20.(12分)三棱锥中,,,,直线与平面所成的角为,点在线段上.(1)求证:;(2)若点在上,满足,点满足,求实数使得二面角的余弦值为.21.(12分)四棱锥中,平面,四边形为平行四边形,(1)若为中点,求证平面;(2)若,求面与面的夹角的余弦值.22.(10分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等比数列的定义,结合等比数列的通项公式进行求解即可.【详解】因为,所以有,因此数列是公比的等比数列,因为,所以,故选:D2、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C3、B【解析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【详解】由得,即,所以使x满足的概率为故选:B.4、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.5、D【解析】根据直线平行的充要条件即可求出【详解】依题意可知,显然,所以由可得,,解得或7故选:D6、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题7、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A8、B【解析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当时,,∴在上单调递增,当时,,∴在上单调递减,排除A、D;又由指数函数增长趋势,排除C.故选:B9、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C10、D【解析】由倾斜角求出斜率,写出斜截式方程,再化为一般式【详解】由于倾斜角为120°,故斜率k=-.又直线过点(-1,0),所以方程为y=-(x+1),即x+y+=0.故选:D.【点睛】本题考查直线方程的斜截式,属于基础题11、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.12、A【解析】先求,然后求.【详解】,,.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用点到直线的距离公式计算即可.【详解】点到直线的距离为.故答案为:.14、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.15、【解析】根据正弦型函数图像平移法则和正弦函数性质进行解题.【详解】解:由题意得:函数的图像向左平移个单位后得:该函数与原函数图像重合故可知,即故当时,最小正实数.故答案为:16、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)将点代入抛物线方程即可求解;(2)当直线AB的斜率存在时,设直线AB的方程为,,将直线方程与抛物线方程联立利用韦达定理即可求出的值;当直线AB的斜率不存在时,由过点即可求出点和点的坐标,即可求出的值.【小问1详解】将点代入得,,∴抛物线的标准方程为.【小问2详解】当直线AB斜率存在时,设直线AB的方程为,,将联立得,,由韦达定理得:,,,当直线AB的斜率不存在时,由直线过点,则,,,,综上所述可知,为定值为.18、(1)函数的减区间为,增区间为,有极小值,无极大值;(2)具体见解析;(3)具体见解析.【解析】(1)对函数求导,进而求出单调区间和极值;(2)结合(1),并代入几个特殊点,再结合函数的变化趋势作出图象;(3)结合(2),采用数形结合的方法求得答案.【小问1详解】,时,,单调递减,时,,单调递增,故函数在x=-1处取得极小值为,无极大值.【小问2详解】作图说明:由(1)可知函数先减后增,有极小值;描出极小值点,原点和点(1,e);当时,函数增加得越来越快,当时,函数越来越接近于0.【小问3详解】结合图象可知,若,则方程有0个解;若,则方程有2个解;若或,则方程有1个解.19、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:可知直线AB的方程为y=x+2,设点A(x1,y1)、B(x2,y2),将直线AB的方程与抛物线的方程联立,求出y1+y2的值,利用抛物线的定义可求得|AB|的值.【小问1详解】由题意点M的轨迹是以F为焦点,直线l为准线的抛物线,所以,则p=4,所以动点M的轨迹方程是x2=8y;【小问2详解】由已知直线AB方程是y=x+2,设A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,则y1+y2=x1+x2+4=12,故|AB|=y1+y2+4=1620、(1)证明见解析;(2).【解析】(1)证明平面,利用线面垂直的性质可证得结论成立;(2)设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可得出关于实数的等式,即可解得实数的值.【小问1详解】证明:因为,,则且,,平面,所以为直线与平面所成的线面角,即,,故,,,平面,平面,因此,.【小问2详解】解:设,由(1)可知且,,因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设平面的法向量为,,,则,取,可得,设平面的法向量为,,,由,取,则,由已知可得,解得.当点为线段的中点时,二面角的平面角为锐角,合乎题意.综上所述,.21、(1)证明见解析(2)【解析】(1)先证,,再证平面即可;(2)建立空间直角坐标系,先求出面与面的法向量,再计算夹角余弦值即可.小问1详解】取中点,连接,则四边形为平行四边形,,为直角三角形,且.又平面,平面,.又,平面.【小问2详解】,为等边三角形,取中点,连接,则,以为坐标原点,分别以为轴建立空间坐标系,如图令,则,设面的法向量为,则由得取,则设面的法向量为,则由得取,则设面与面的夹角为,则所以面与面的夹角的余弦值为.22、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年马鞍山十七冶医院招聘15人考试参考题库附答案
- 2026广东梧州市龙投人力资源有限公司招聘17人笔试备考试题及答案解析
- 2025广西南宁高新区管委会聘用人员5人(公共基础知识)综合能力测试题附答案
- 2025年济宁医学院附属医院公开招聘高级专业技术岗位和博士研究生人员(50人)考试参考题库附答案
- 2025年合肥市轨道交通集团有限公司社会招聘38人考前自测高频考点模拟试题附答案
- 2025成都农商银行软件开发岗(应用架构方向)社会招聘考试题库附答案
- 2025年浙江省永嘉县公开选调公务员14人备考题库附答案
- 2025广东江门市江海区保安服务有限公司招聘1人(公共基础知识)测试题附答案
- 2025年甘肃铁投集团招聘高校应届毕业生10人考前自测高频考点模拟试题附答案
- AI赋能应急响应:实战应用与效能提升
- 肾病综合征中医护理查房
- 山东省济南市历城区2024-2025学年八年级上学期期末考试英语试卷
- DB51T 3115-2023 四川省政务服务评价数据汇聚规范
- JJF(京) 151-2024 药物溶出度仪温度参数校准规范
- (新版)特种设备安全管理取证考试题库(浓缩500题)
- 标准维修维护保养服务合同
- 苏教译林版五年级上册英语第八单元Unit8《At Christmas》单元测试卷
- 《社会调查研究与方法》课程复习题-课程ID-01304试卷号-22196
- 电力工程有限公司管理制度制度范本
- 科研伦理与学术规范-课后作业答案
- 顶管工程施工检查验收表
评论
0/150
提交评论