版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省鸡西市鸡东县二中2026届高二数学第一学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.142.函数的导数记为,则等于()A. B.C. D.3.已知奇函数,则的解集为()A. B.C. D.4.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.5.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.926.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定7.已知集合,,则中元素的个数为()A.3 B.2C.1 D.08.已知,,,若,,共面,则λ等于()A. B.3C. D.99.双曲线的焦点到渐近线的距离为()A. B.C. D.10.已知,,且,则向量与的夹角为()A. B.C. D.11.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.12.向量,向量,若,则实数()A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,则___________.14.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___15.已知春季里,甲地每天下雨的概率为,乙地每天下雨的概率大于0,且甲、乙两地下雨相互独立,则春季的一天里,已知乙地下雨的条件下,甲地也下雨的概率为___________.16.以点为圆心,且与直线相切的圆的方程是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求B;(2)若,求的面积的最大值18.(12分)已知函数(1)填写函数的相关性质;定义域值域零点极值点单调性性质(2)通过(1)绘制出函数的图像,并讨论方程解的个数19.(12分)已知数列的前项和为,满足_______请在①;②,;③三个条件中任选一个,补充在上面的横线上,完成上述问题.注:若选择不同的条件分别解答,则按第一个解答计分(1)求数列的通项公式;(2)数列满足,求数列的前项和20.(12分)设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.21.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且(1)求数列的通项公式;(2)求的值22.(10分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.2、D【解析】求导后代入即可.【详解】,.故选:D.3、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.4、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.5、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.6、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.7、B【解析】集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆与直线相交于两点,,则中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.8、C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C9、D【解析】根据题意,由双曲线的标准方程可得双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得答案.【详解】解:根据题意,双曲线的方程为,其焦点坐标为,其渐近线方程为,即,则其焦点到渐近线的距离;故选D.【点睛】本题考查双曲线的几何性质,关键是求出双曲线的渐近线与焦点坐标.10、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.11、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B12、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】根据等比数列下标和性质得到,再根据等差数列前项和公式计算可得;【详解】解:因,所以,所以;故答案为:14、【解析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.15、##0.5【解析】根据条件概率求概率的方法即可求得答案.【详解】设A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率为p,则,因为甲乙两地下雨相互独立,所以,于是在乙地下雨的条件下,甲地也下雨的概率为.故答案为:.16、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1):根据正弦定理由边化角和三角正弦和公式即可求解;(2):根据余弦定理和均值不等式求得最大值,利用面积公式即可求解【小问1详解】由正弦定理及,得,∵,∵,∴【小问2详解】由余弦定理,∴,∴,当且仅当时等号成立,∴的面积的最大值为18、(1)详见解析(2)详见解析【解析】(1)利用导数判断函数的性质;(2)由函数性质绘制函数的图象,并将方程转化为,即转化为与的交点个数.【小问1详解】函数的定义域是,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,同时也是函数的最大值,,当时,,当时,,函数的值域是,,得,所以函数的零点是,定义域值域零点极值点单调性性质单调递增区间,单调递减区间【小问2详解】函数的图象如图,,即,方程解的个数,即与的交点个数,当时,无交点,即方程无实数根;当或时,有一个交点,即方程有一个实数根;当时,有两个交点,即方程有两个实数根.19、(1)条件选择见解析,;(2).【解析】(1)选①,可得出,由可求得数列的通项公式;选②,分析可知数列是公差为的等差数列,根据已知条件求出的值,利用等差数列的求和公式可求得数列的通项公式;选③,在等式中令可求得的值,即可得出数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:选①,因为,则,则,当时,,也满足,所以,对任意的,;选②,因为,则数列是公差为的等差数列,所以,,解得,则;选③,对任意的,,则,可得,因此,.【小问2详解】解:因为,因此,.20、(1)(2)【解析】(1)解不等式得到解集,根据题意列出不等式组,求出的取值范围;(2)先解不等式,再根据充分不必要条件得到是的真子集,进而求出的取值范围.【小问1详解】因为,由可得:,因为“,”为真命题,所以,即,解得:.即的取值范围是.【小问2详解】因为,由可得:,,因为是的充分不必要条件,所以是的真子集,所以(等号不同时取),解得:,即的取值范围是.21、(1)(2)【解析】(1)若选①可得,从而得到,即可得到是常数列,即可求出数列的通项公式;若选②,根据,作差即可得到,再利用累乘法计算可得;若选③:可得,即可得到数列是等差数列,首项为2,公差为1,从而求出数列的通项公式;(2)由(1)可得,利用裂项相消法计算可得;【小问1详解】解:选①:∵即∴即∴数列是常数列∴∴选②:∵∴时,则即∴∴当时,也满足,∴选③:因为,所以,所以数列是等差数列,首项为2,公差为1则∴【小问2详解】解:由(1)可得,∴22、(1),(2)证明见解析,定点【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年浙江宇翔职业技术学院单招职业技能测试题库及答案1套
- 2026年武汉海事职业学院单招职业技能考试模拟测试卷及答案1套
- 2026年湖北城市建设职业技术学院单招职业技能测试题库附答案
- 2026年心理下载考试题库参考答案
- 2026年广西金融职业技术学院单招职业技能考试模拟测试卷及答案1套
- 2026年抑郁心理考试题库带答案
- 2026年山东华宇工学院单招职业适应性考试题库及答案1套
- 2026年常州工业职业技术学院单招职业倾向性测试模拟测试卷及答案1套
- 2026浙江宁波大学附属人民医院招聘编外人员2人(影像技师)笔试模拟试题及答案解析
- 2025年12月江苏扬州市宝应县教育系统事业单位招聘教师11人考试题库附答案
- 项目管理流程标准作业程序手册
- 自我介绍礼仪课件
- 卫生院孕优知识培训课件
- 2025-2030工业窑炉烟气多污染物协同控制技术
- 培训机构台账
- 电商预算表格财务模板全年计划表格-做账实操
- 泵车日常管理办法
- 骨科术后疼痛评估与护理查房
- 输液泵的使用培训课件
- 中医针灸治疗妇科疾病
- 25年自来水考试试题大题及答案
评论
0/150
提交评论