版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学海大联考2026届高一数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B.C. D.2.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.3.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)4.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.5.已知定义域为的函数满足,且,若,则()A. B.C. D.6.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.从800件产品中抽取6件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数开始往右读数(随机数表第7行至第9行的数如下),则抽取的6件产品的编号的75%分位数是()……844217533157245506887704744767217633502583921206766301637859169556671169105671751286735807443952387933211234297864560782524207443815510013429966027954A.105 B.556C.671 D.1699.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右10.已知方程的两根为与,则()A.1 B.2C.4 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.集合的非空子集是________________12.已知,则满足f(x)=的x的值为________13.已知函数,则满足的的取值范围是___________.14.若函数的图象过点,则函数的图象一定经过点________.15.若函数在区间上有两个零点,则实数的取值范围是_______.16.若函数,则_________;不等式的解集为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,.(1)证明:平面;(2)求直线与平面所成的角的正弦值.18.已知函数.(1)求函数的单调区间;(2)若函数在有且仅有两个零点,求实数取值范围.19.在中,,记,且为正实数),(1)求证:;(2)将与的数量积表示为关于的函数;(3)求函数的最小值及此时角的大小20.在①函数;②函数;③函数的图象向右平移个单位长度得到的图象,的图象关于原点对称;这三个条件中任选一个作为已知条件,补充在下面的问题中,然后解答补充完整的题已知______(只需填序号),函数的图象相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)求函数的单调递减区间及其在上的最值注:若选择多个条件分别解答,则按第一个解答计分.21.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据绝对值不等式的解法和二次函数的性质,分别求得集合,即可求解.【详解】由,解得,即,即,又由,即,所以.故选:D.2、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点3、B【解析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件4、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B5、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A6、C【解析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C7、B【解析】先化简p,q,再利用充分条件和必要条件的定义判断.【详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B8、C【解析】由随机表及编号规则确定抽取的6件产品编号,再从小到大排序,应用百分位数的求法求75%分位数.【详解】由题设,依次读取的编号为,根据编号规则易知:抽取的6件产品编号为,所以将它们从小到大排序为,故,所以75%分位数为.故选:C9、C【解析】因为,由此可得结果.【详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.10、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合子集的概念,写出集合A的所有非空子集即可.【详解】集合的所有非空子集是.故答案为:.12、3【解析】分和两种情况并结合分段函数的解析式求出x的值【详解】由题意得(1)或(2),由(1)得x=2,与x≤1矛盾,故舍去由(2)得x=3,符合x>1∴x=3故答案为3【点睛】已知分段函数的函数值求自变量的取值时,一般要进行分类讨论,根据自变量所在的范围选用相应的解析式进行求解,求解后要注意进行验证.本题同时还考查对数、指数的计算,属于基础题13、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.14、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.15、【解析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可【详解】由题意,要使函数区间上有两个零点,只要,即,解得,故答案为【点睛】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题.16、①.②.【解析】代入求值即可求出,分与两种情况解不等式,最后求并集即可.【详解】,当时,,所以,解得:;当时,,解得:,所以,综上:.故答案为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】(1)连接交于点,连接,,可证明四边形是平行四边形,从而,再由线面平行的判定即可求解;(2)作出平面的垂线,即可作出线面角,求出相关线段的长度即可求解.试题解析:(1)连接交于点,连接,,∵为菱形,∴点在上,且,又∵,故四边形是平行四边形,则,∴平面;(2)由于为菱形,∴,又∵是直四棱柱,∴,平面,∴平面平面,过点作平面和平面交线的垂线,垂足为,得平面,连接,则是直线平面所成的角,设,∵是菱形且,则,,在中,由,,得,在中,由,,得,∴.考点:1.线面平行的判定;2.线面角的求解.18、(1)单调递增区间为,单调递减区间为(2)【解析】(1)先由三角恒等变换化简解析式,再由正弦函数的性质得出单调区间;(2)由的单调性结合零点的定义求出实数的取值范围.【小问1详解】由得故函数的单调递增区间为.由得故函数的单调递减区间为【小问2详解】由(1)可知,在上为增函数,在上为减函数由题意可知:,即,解得,故实数的取值范围为.19、(1)证明见解析;(2);(3)2,.【解析】(1)由,得到,根据,即可求解;(2)由,整理得,即可求得表达式;(3)由(2)知,结合基本不等式,求得的最小值,再利用向量的夹角公式,即可求解.【详解】(1)在中,,可得,所以,所以.(2)由,可得,即,整理得,所以(3)由(2)知,因为为正实数,则,当且仅当时,即时,等号成立,所以的最小值为2,即,此时,因为,可得,又因为,此时为等边三角形,所以【点睛】求平面向量的模的2种方法:1、利用及,把向量模的运算转化为数量积的运算;2、利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.20、(1)条件选择见解析,(2)单调递减区间为,最小值为,最大值为2【解析】(1)选条件①:利用同角三角函数的关系式以及两角和的正弦公式和倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件②:利用两角和的正弦公式以及倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件③,先求得,利用三角函数图象的平移变换规律,可得到g(x)的表达式,根据其性质求得,即得答案;(2)根据正弦函数的单调性即可求得答案,再由,确定,根据三角函数性质即可求得答案.【小问1详解】选条件①:法一:又由函数的图象相邻两条对称轴之间的距离为,可知函数最小正周期,∴,∴选条件②:,又最小正周期,∴,∴选条件③:由题意可知,最小正周期,∴,∴,∴,又函数的图象关于原点对称,∴,∵,∴∴【小问2详解】由(1)知,由,解得,∴函数单调递减区间为由,从而,故在区间上的最小值为,最大值为2.21、(1)2;(2)见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以朋友为题的演讲稿
- 人工智能时代:机遇与挑战
- 老人护理考试题及答案
- 矿山钻工考试题及答案
- 蓝黑商务风团队网络安全意识培训模板
- 护理书写考试题及答案
- 造林更新工QC考核试卷含答案
- 绿化造园工持续改进知识考核试卷含答案
- 牙粉制造工岗前基础验收考核试卷含答案
- G通信技术现状及发展
- 商业中庭防坠网施工方案
- 交付异常应急预案
- 砌体工程监理实施细则及操作规范
- GB/T 222-2025钢及合金成品化学成分允许偏差
- 方太企业培训课件
- 四川村级财务管理制度
- 房产抖音培训课件
- (正式版)DB15∕T 3463-2024 《双炉连续炼铜工艺技术规范》
- 律师团队合作规范及管理办法
- 二氧化硅气凝胶的制备技术
- 临床微生物标本采集运送及处理
评论
0/150
提交评论