2026届安徽省巢湖市数学高二上期末统考模拟试题含解析_第1页
2026届安徽省巢湖市数学高二上期末统考模拟试题含解析_第2页
2026届安徽省巢湖市数学高二上期末统考模拟试题含解析_第3页
2026届安徽省巢湖市数学高二上期末统考模拟试题含解析_第4页
2026届安徽省巢湖市数学高二上期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省巢湖市数学高二上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若向量则()A. B.3C. D.2.如图所示,向量在一条直线上,且则()A. B.C. D.3.圆的圆心坐标和半径分别为()A.和 B.和C.和 D.和4.已知是双曲线的左、右焦点,点P在C上,,则等于()A.2 B.4C.6 D.85.命题的否定是()A. B.C. D.6.已知函数的部分图象如图所示,且经过点,则()A.关于点对称B.关于直线对称C.为奇函数D.为偶函数7.已知F1、F2是双曲线E:(a>0,b>0)的左、右焦点,过F1的直线与双曲线左、右两支分别交于点P、Q.若,M为PQ的中点,且,则双曲线的离心率为()A. B.C. D.8.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.9.双曲线的光学性质如下:如图1,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线灯”的轴截面是双曲线一部分,如图2,其方程为,分别为其左、右焦点,若从右焦点发出的光线经双曲线上的点A和点B反射后(,A,B在同一直线上),满足,则该双曲线的离心率的平方为()A. B.C. D.10.已知椭圆的左右焦点分别为,,过C上的P作y轴的垂线,垂足为Q,若四边形是菱形,则C的离心率为()A. B.C. D.11.“”是“圆与轴相切”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若存在,使得成立,则实数的取值范围是_______________14.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______15.若直线与直线平行,则实数m的值为____________16.已知三角形OAB顶点,,,则过B点的中线长为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.18.(12分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.19.(12分)设点,动圆P经过点F且和直线相切,记动圆的圆心P的轨迹为曲线W(1)求曲线W的方程;(2)直线与曲线W交于A、B两点,其中O为坐标原点,已知点T的坐标为,记直线TA,TB的斜率分别为,,则是否为定值,若是求出,不是说明理由20.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和21.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.22.(10分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,其中第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:参考公式:,月份12345违章驾驶员人数1201051009580(1)请利用所给数据求违章人数y与月份x之间的回归直线方程;(2)预测该路口10月份的不“礼让斑马线”违章驾驶员人数;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得,然后根据空间向量模的坐标运算求得【详解】由于向量,,所以.故故选:D2、D【解析】根据向量加法的三角形法则得到化简得到故答案为D3、C【解析】利用圆的一般方程的圆心和半径公式,即得解【详解】可化为,由圆心为,半径,易知圆心的坐标为,半径为.故选:C4、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D5、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C6、D【解析】根据图象求得函数解析式,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,可得,根据图形走势,可得,解得,令,可得,所以,由,所以A不正确;由,可得不是函数的对称轴,所以B不正确;由,此时函数为非奇非偶函数,所以C不正确;由为偶函数,所以D正确.故选:D.7、D【解析】由题干条件得到,设出,利用双曲线定义表达出其他边长,得到方程,求出,从而得到,,利用勾股定理求出的关系,求出离心率.【详解】因为M为PQ的中点,且,所以△为等腰三角形,即,因为,设,则,由双曲线定义可知:,所以,则,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故选:D8、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力9、D【解析】设,根据题意可得,由双曲线定义得、,进而求出(用表示),然后在中,应用勾股定理得出关系,求得离心率【详解】易知共线,共线,如图,设,则.因为,所以,则,则,又因为,所以,则,在中,,即,所以.故选:D10、C【解析】根据题意求出P点坐标,代入椭圆方程中,可整理得到关于a,c的等式,进一步整理为关于e的方程,解得答案.【详解】如图示:由题意可知,因为四边形是菱形,所以,则,所以P点坐标为,将P点坐标为代入得:,整理得,故,由于,解得,所以,故选:C.11、A【解析】根据充分不必要条件的定义和圆心到轴的距离求出可得答案.【详解】时,圆的圆心坐标为,半径为2,此时圆与轴相切;当圆与轴相切时,因为圆的半径为2,所以圆心到轴的距离为,所以,“”是“圆与轴相切”的充分不必要条件故选:A12、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分离参数法得到能成立,构造函数,求出的最小值,即可求出实数a的取值范围.【详解】由得.设,则存在,使得成立,即能成立,所以能成立,所以.又令,由对勾函数的性质可得:在上,t(x)单调递增,所以当x=2时,t有最小值,所以实数a的取值范围是.故答案为:【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围.14、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点,因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.15、【解析】利用两条直线平行的充要条件,列式求解即可【详解】解:因为直线与直线平行,所以,解得故答案为:16、【解析】先求出中点坐标,再由距离公式得出过B点的中线长.【详解】由中点坐标公式可得中点,则过B点的中线长为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据题意得到等量关系,求出,,进而求出圆的方程;(2)结合第一问求出的圆心和半径,及题干条件得到圆心到直线的距离为,列出方程,求出的值,进而得到直线方程【小问1详解】由题意得:直线过圆心,即,且,解得:,,所以圆C的方程为;【小问2详解】的圆心为,半径为2,由题意得:,圆心到直线的距离为,即,解得:或,所以直线的方程为:或.18、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜率不存在和斜率存在两种情况讨论,结合点到直线的距离公式,列出方程,即可求解.(2)设点,,根据线段的中点为,求得,结合在圆上,代入即可求解.【小问1详解】解:由题意,圆,可得圆心,半径,因为直线被圆C截得的弦长为,则圆心到直线的距离为,当直线的斜率不存在时,此时直线的方程为,满足题意;当直线的斜率存在时,设直线的方程为,即,则,解得,即,综上可得,所求直线的方程为或.【小问2详解】解:设点,因为点,线段的中点为,可得,解得,又因为在圆上,可得,即,即点的轨迹方程为.19、(1);(2)是定值,.【解析】(1)根据给定条件结合抛物线定义直接求解作答.(2)联立直线与抛物线方程,借助韦达定理、斜率坐标公式计算作答.【小问1详解】过点P作直线的垂线,垂足为点N,依题意,,则动点P的轨迹是以为焦点,直线为准线的抛物线,所以曲线W的方程是.【小问2详解】设,,由消去x并整理得:,则,,因,,则,,因此,所以.【点睛】方法点睛:求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值20、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以21、(1);(2).【解析】(1)先设等差数列的公差为,由题中条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论