版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水2026届高二上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列直线中,倾斜角最大的为()A. B.C. D.2.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直3.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米4.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.485.已知直线l,m,平面α,β,,,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1447.已知为椭圆的两个焦点,过的直线交椭圆于两点,若,则()A. B.C. D.8.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等10.若关于x的方程有解,则实数的取值范围为()A. B.C. D.11.如图,在三棱锥中,是线段的中点,则()A. B.C. D.12.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球14.空间直角坐标系中,点,的坐标分别为,,则___________.15.已知抛物线C:y2=2px过点P(1,1):①点P到抛物线焦点的距离为②过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为③过点P与抛物线相切的直线方程为x-2y+1=0④过点P作两条斜率互为相反数的直线交抛物线于M,N两点,则直线MN的斜率为定值其中正确的是________.16.古希腊数学家阿波罗尼斯发现:平面内到两个定点,的距离之比为定值的点的轨迹是圆.人们将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知点,,动点满足,记动点的轨迹为曲线,给出下列四个结论:①曲线方程为;②曲线上存在点,使得到点的距离为;③曲线上存在点,使得到点的距离大于到直线的距离;④曲线上存在点,使得到点与点的距离之和为.其中所有正确结论的序号是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在边长为4的等边三角形ABC中,D,E,F分别是AB,AC,BC的中点,沿DE把折起,得到如图2所示的四棱锥.(1)证明:平面.(2)若二面角的大小为60°,求平面与平面的夹角的大小.18.(12分)已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(1)若e=,求椭圆的方程;(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,且<e≤,求k的取值范围.19.(12分)已知向量,.(1)计算和;(2)求.20.(12分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.21.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域22.(10分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D2、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.3、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C4、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D5、A【解析】由题意可知,已知,,则可以推出,反之不成立.【详解】已知,,则可以推出,已知,,则不可以推出.故是的充分不必要条件.故选:A.6、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.7、C【解析】根据椭圆的定义可得,由即可求解.【详解】由,可得根据椭圆的定义,所以.故选:C8、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B9、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D10、C【解析】将对数方程化为指数方程,用x表示出a,利用基本不等式即可求a的范围【详解】,,当且仅当时取等号,故故选:C11、A【解析】根据给定几何体利用空间向量基底结合向量运算计算作答.【详解】在三棱锥中,是线段的中点,所以:.故选:A12、C【解析】先根据题意对数据进行排列,然后由中位数的定义求解即可【详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据题意,由游戏规则,结合余数的性质,分析可得答案【详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:414、【解析】利用空间直角坐标系中两点间的距离公式计算即得.【详解】在空间直角坐标系中,因点,的坐标分别为,,所以.故答案为:15、②③④【解析】由抛物线过点可得抛物线的方程,求出焦点的坐标及准线方程,由抛物线的性质可判断①;求出直线的方程与抛物线联立切线的坐标,进而求出三角形的面积,判断②;设直线方程为y-1=k(x-1),与y2=x联立求得斜率,进而可得在处的切线方程,从而判断③;设直线的方程为抛物线联立求出的坐标,同理求出的坐标,进而求出直线的斜率,从而可判断④【详解】解:由抛物线过点,所以,所以,所以抛物线的方程为:;可得抛物线的焦点的坐标为:,,准线方程为:,对于①,由抛物线的性质可得到焦点的距离为,故①错误;对于②,可得直线的斜率,所以直线的方程为:,代入抛物线的方程可得:,解得,所以,故②正确;对于③,依题意斜率存在,设直线方程为y-1=k(x-1),与y2=x联立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切线方程为x-2y+1=0,故③正确;对于④,设直线的方程为:,与抛物线联立可得,所以,所以,代入直线中可得,即,,直线的方程为:,代入抛物线的方程,可得,代入直线的方程可得,所以,,所以为定值,故④正确故答案为:②③④.16、①④【解析】设,根据满足,利用两点间距离公式化简整理,即可判断①是否正确;由①可知,圆上的点到的距离的范围为,进而可判断②是否正确;设,根据题意可知,再根据在曲线上,可得,由此即可判断③是否正确;由椭圆的的定义,可知在椭圆上,再根据椭圆与曲线的位置关系,即可判断④是否正确.【详解】设,因为满足,所以,整理可得:,即,所以①正确;对于②中,由①可知,点在圆的外部,因为到圆心的距离,半径为,所以圆上的点到的距离的范围为,而,所以②不正确;对于③中,假设存在,使得到点的距离大于到直线的距离,又,到直线的距离,所以,化简可得,又,所以,即,故假设不成立,故③不正确;对于④中,假设存在这样的点,使得到点与点的距离之和为,则在以点与点为焦点,实轴长为的椭圆上,即在椭圆上,易知椭圆与曲线有交点,故曲线上存在点,使得到点与点的距离之和为;所以④正确.故答案为:①④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由结合线面平行的判定即可推理作答.(2)取DE的中点M,连接,FM,证明平面平面,再建立空间直角坐标系,借助空间向量推理、计算作答.【小问1详解】在中,因为E,F分别是AC,BC的中点,所以,则图2中,,而平面,平面,所以平面.【小问2详解】依题意,是正三角形,四边形是菱形,取DE的中点M,连接,FM,如图,则,,即是二面角的平面角,,取中点N,连接,则有,在中,由余弦定理得:,于是有,,即,而,,,平面,则平面,又平面,从而有平面平面,因平面平面,平面,因此,平面,过点N作,则两两垂直,以点N为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,则,,,,,,,设平面的法向量,则,令,得,设平面的法向量,则,令,得,显然有,即,所以平面与平面的夹角为.【点睛】方法点睛:利用向量法求二面角:(1)找法向量,分别求出两个半平面所在平面的法向量,然后求得法向量的夹角,结合图形得到二面角的大小;(2)找与交线垂直的直线的方向向量,分别在二面角的两个半平面内找到与交线垂直且以垂足为起点的直线的方向向量,则这两个向量的夹角就是二面角的平面角18、(1);(2)【解析】(1)根据右焦点为F2(3,0),以及,求得a,b,c即可.(2)联立,根据M,N分别为线段AF2,BF2中点,且坐标原点O在以MN为直径的圆上,易得OM⊥ON,则四边形OMF2N为矩形,从而AF2⊥BF2,然后由0,结合韦达定理求解.【详解】(1)由题意得c=3,,所以.又因为a2=b2+c2,所以b2=3.所以椭圆的方程为.(2)由,得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依题意易知,OM⊥ON,四边形OMF2N为矩形,所以AF2⊥BF2.因为(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,将其整理为k2==-1-.因为<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【点睛】关键点点睛:本题第二问的关键是由O在以MN为直径的圆上,即OM⊥ON,得到四边形OMF2N为矩形,推出AF2⊥BF2,结合韦达定理得出斜率k与离心率e的关系.19、(1),;(2).【解析】(1)利用空间向量的坐标运算可求得的坐标,利用向量的模长公式可求得的值;(2)计算出,结合的取值范围可求得结果.【详解】(1),;(2),,因此,.【点睛】本题考查空间向量的坐标运算,同时也考查了利用空间向量的数量积计算向量的夹角,考查计算能力,属于基础题.20、(1),(2)【解析】(1)由题意可得,从而可求出,进而可求得的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求得结果【详解】(1)因为数列是公差为2的等差数列,且成等比数列,所以即,解得,所以;(2)由(1)得,所以.21、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026陕西长岭纺织机电科技有限公司招聘(13人)笔试备考题库及答案解析
- 2026年征兵工作心理考试题库及答案1套
- 2026福建厦门市工人文化宫合同制职工招聘1人笔试参考题库及答案解析
- 2026年浙江省衢州市单招职业倾向性考试题库及答案1套
- 2026年湖北职业技术学院单招职业适应性考试模拟测试卷及答案1套
- 2026河南郑州大学物理学院人工微结构课题组招聘科研助理1人笔试备考试题及答案解析
- 2026年桂林师范高等专科学校单招职业适应性考试题库附答案
- 2026年河南物流职业学院单招职业适应性考试题库附答案
- 2026福建泉州德化闽投抽水蓄能有限公司招聘笔试参考题库及答案解析
- 2025广西南宁市良庆区总工会招聘工作人员1人笔试备考题库及答案解析
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
- 里氏硬度计算表
- 输电线路基础知识输电线路组成与型式
- 南昌工程学院施工组织设计
- GA 1808-2022军工单位反恐怖防范要求
- 《中国特色社会主义》期末试卷
- 某煤矿防治水分区管理论证报告
- 双室平衡容器说明书
- RB/T 218-2017检验检测机构资质认定能力评价机动车检验机构要求
- GB/T 24128-2009塑料防霉性能试验方法
- GB/T 14689-2008技术制图图纸幅面和格式
评论
0/150
提交评论