重庆市南开中学2026届数学高二上期末统考试题含解析_第1页
重庆市南开中学2026届数学高二上期末统考试题含解析_第2页
重庆市南开中学2026届数学高二上期末统考试题含解析_第3页
重庆市南开中学2026届数学高二上期末统考试题含解析_第4页
重庆市南开中学2026届数学高二上期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市南开中学2026届数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的递增区间是()A. B.和C. D.和2.设点是点,,关于平面的对称点,则()A.10 B.C. D.383.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个4.已知是等差数列,,,则公差为()A.6 B.C. D.25.甲乙两名运动员在某项体能测试中的6次成绩统计如表:甲9816151514乙7813151722分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A., B.,C., D.,6.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.7.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.8.对于圆上任意一点的值与x,y无关,有下列结论:①当时,r有最大值1;②在r取最大值时,则点的轨迹是一条直线;③当时,则.其中正确的个数是()A.3 B.2C.1 D.09.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是10.已知正实数x,y满足4x+3y=4,则的最小值为()A. B.C. D.11.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.12.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为_________14.已知抛物线:,若直线与抛物线C相交于M,N两点,则_______________.15.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.16.已知长轴长为,短轴长为的椭圆的面积为.现用随机模拟的方法来估计的近似值,先用计算机产生个数对,,其中,均为内的随机数,再由计算机统计发现其中满足条件的数对有个,由此可估计的近似值为______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?18.(12分)已知函数是定义在实数集上的奇函数,且当时,(1)求的解析式;(2)若在上恒成立,求的取值范围19.(12分)已知,是椭圆:的左、右焦点,离心率为,点A在椭圆C上,且的周长为.(1)求椭圆C的方程;(2)若B为椭圆C上顶点,过的直线与椭圆C交于两个不同点P、Q,直线BP与x轴交于点M,直线BQ与x轴交于点N,判断是否为定值.若是,求出定值,若不是,请说明理由.20.(12分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.21.(12分)设集合(1)若,求;(2)设,若是成立的必要不充分条件,求实数a的取值范围22.(10分)已知为数列的前项和,且.(1)求的通项公式;(2)若,求的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.2、A【解析】写出点坐标,由对称性易得线段长【详解】点是点,,关于平面的对称点,的横标和纵标与相同,而竖标与相反,,,,直线与轴平行,,故选:A3、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.4、C【解析】设的首项为,把已知的两式相减即得解.【详解】解:设的首项为,根据题意得,两式相减得.故选:C5、B【解析】根据给定统计表计算、,再比较、大小判断作答.【详解】依题意,,,,,所以,.故选:B6、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).7、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A8、B【解析】可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,圆在两直线内部,则,的距离为,则,,对于①,当时,r有最大值1,得出结论;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,得出结论;对于③当时,则得出结论.【详解】设,故可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,可知直线平移时,点与直线,的距离之和均为,的距离,即此时圆在两直线内部,,的距离为,则,对于①,当时,r有最大值1,正确;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,正确;对于③当时,则即,解得或,故错误.故正确结论有2个,故选:B.9、C【解析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C10、A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,当且仅当时取等号,∴的最小值为.故选:A11、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A12、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】将代数式变形为,写出展开式的通项,令的指数为,求得参数的值,代入通项即可求解.【详解】由展开式的通项为,令,得展开式中的系数为.由展开式的通项为,令,得展开式中的系数为.所以的展开式中的系数为.故答案为:.14、8【解析】直线方程代入抛物线方程,应用韦达定理根据弦长公式求弦长【详解】设,由得,所以,,故答案为:815、【解析】由题意可分为步、步、步、步、步、步共6种情况,分别求出每种的基本事件数,再利用古典概型的概率公式计算可得;【详解】解:由题意可分为步、步、步、步、步、步共6种情况,①步:即步两阶,有种;②步:即步两阶与步一阶,有种;③步:即步两阶与步一阶,有种;④步:即步两阶与步一阶,有种;⑤步:即步两阶与步一阶,有种;⑥步:即步一阶,有种;综上可得一共有种情况,满足7步登完楼梯的有种;故7步登完楼梯的概率为故答案为:16、【解析】由,,根据表示的数对对应的点在椭圆的内部,且在第一象限,求出满足条件的点的概率,再转化为几何概型的面积类型求解【详解】,,表示的数对对应的点在椭圆的内部,且在第一象限,其面积为,故,得故答案为:.【点睛】本题主要考查了几何型概率应用,解题关键是掌握几何型概率求法,考查了分析能力和计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m318、(1),(2)实数的取值范围是【解析】(1)根据函数奇偶性求解析式;(2)将恒成立转化为令,恒成立,讨论二次函数系数,结合根的分布.【详解】解:(1)因为函数是定义在实数集上的奇函数,所以,当时,则所以当时所以(2)因为时,在上恒成立等价于即在上恒成立令,则①当时,不恒成立,故舍去②当时必有,此时对称轴若即或时,恒成立因为,所以若即时,要使恒成立则有与矛盾,故舍去综上,实数的取值范围是【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于的方程(组),从而得到的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.19、(1)(2)【解析】(1)利用椭圆的定义可得,而离心率,解方程组,即可得解;(2)设直线的方程为,将其与椭圆的方程联立,由,,三点的坐标写出直线,的方程,进而知点,的坐标,再结合韦达定理,进行化简,即可得解【小问1详解】解:因为的周长为,所以,即,又离心率,所以,,所以,故椭圆的方程为【小问2详解】解:由题意知,直线的斜率一定不可能为0,设其方程为,,,,,联立,得,所以,,因为点为,所以直线的方程为,所以点,,直线的方程为,所以点,,所以,即为定值20、(1);(2),.【解析】(1)根据等差数列和等比数列的通项公式进行求解即可;(2)根据等差数列的通项公式,结合等比数列的前项和公式进行求解即可.【小问1详解】设等差数列的公差为,因为成等差数列,所以有,因成等比数列,所以,所以;【小问2详解】由题意可知:在和之间插入个,在和之间插入个,,在和之间插入个,此时共插入的个数为:,在和之间插入个,此时共插入的个数为:,因此.21、(1)(2)【解析】(1)根据不等式的解答求得,当时,求得,结合集合并集的运算,即可求解;(2)由题意得到是的真子集,根据集合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论