版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东深圳市红岭中学高二数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.2.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.23.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.24.抛物线的焦点是A. B.C. D.5.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形6.数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153 B.190C.231 D.2767.一个动圆与定圆相外切,且与直线相切,则动圆圆心的轨迹方程为()A. B.C. D.8.已知直线与直线垂直,则()A. B.C. D.39.曲线上的点到直线的最短距离是()A. B.C. D.110.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.11.已知直线与平行,则的值为()A. B.C. D.12.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列满足,则_________14.直线l过抛物线的焦点F,与抛物线交于A,B两点,与其准线交于点C,若,则直线l的斜率为______.15.一条直线过点,且与抛物线交于,两点.若,则弦中点到直线的距离等于__________16.在等差数列中,,公差,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个完美均匀且灵活的平衡链被它的两端悬挂,且只受重力的影响,这个链子形成的曲线形状被称为悬链线(如图所示).选择适当的坐标系后,悬链线对应的函数近似是一个双曲余弦函数,其解析式可以为,其中,是常数.(1)当时,判断并证明的奇偶性;(2)当时,若最小值为,求的最小值.18.(12分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.19.(12分)如图,四棱锥中,平面、底面为菱形,为的中点.(1)证明:平面;(2)设,菱形的面积为,求二面角的余弦值.20.(12分)如图,在四棱柱中,侧棱底面,,,,,,,()(1)求证:平面;(2)若直线与平面所成角的正弦值为,求的值;(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)21.(12分)已知等比数列的公比为,前项和为,,,(1)求(2)在平面直角坐标系中,设点,直线的斜率为,且,求数列的通项公式22.(10分)已知,使;不等式对一切恒成立.如果为真命题,为假命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.2、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.3、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.4、D【解析】先判断焦点的位置,再从标准型中找出即得焦点坐标.【详解】焦点在轴上,又,故焦点坐标为,故选D.【点睛】求圆锥曲线的焦点坐标,首先要把圆锥曲线的方程整理为标准方程,从而得到焦点的位置和焦点的坐标.5、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.6、B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:B【点睛】本题考查合情推理中的归纳推理;考查逻辑推理能力;观察分析、寻求规律是求解本题的关键;属于中档题、探索型试题.7、D【解析】根据点到直线的距离与点到点之间距离的关系化简即可.【详解】定圆的圆心,半径为2,设动圆圆心P点坐标为(x,y),动圆的半径为r,d为动圆圆心到直线的距离,即r,则根据两圆相外切及直线与圆相切的性质可得,所以,化简得:∴动圆圆心轨迹方程为故选:D8、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.9、B【解析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l:的距离的最小值为.故选:B10、B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B”为事件,则{(下,下,右)},由古典概型的概率公式可知故选:B11、C【解析】由两直线平行可得,即可求出答案.【详解】直线与平行故选:C.12、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、84【解析】设公比为q,求出,再由通项公式代入可得结论【详解】设公比为q,则,解得所以故答案为:8414、【解析】由抛物线方程求出焦点坐标与准线方程,设直线为,、,即可得到的坐标,再联立直线与抛物线方程,消元列出韦达定理,表示出、的坐标,根据得到方程,求出,即可得解;【详解】解:抛物线方程为,则焦点,准线为,设直线为,、,则,由,消去得,所以,,则,,因为,所以,所以,所以,解得,所以,即直线为,所以直线的斜率为;故答案为:15、【解析】求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离【详解】解:如图,抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于故答案为:16、15【解析】由等差数列通项公式直接可得.【详解】.故答案为:15三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)偶函数(2)10【解析】(1)根据偶函数定义直接判断可知;(2)由基本不等式求得的最小值,得到a、b的关系,然后代入目标式,分离常数,然后可得.【小问1详解】当时,,定义域为R,因为所以为偶函数.【小问2详解】因为,所以,当且仅当,即时,取等号.由题知,即,因为,所以,即所以令,,则,所以,所以,当,即时,取等号.所以的最小值为10.18、(1)证明见解析.(2)【解析】(1)根据线面垂直的性质和判定可得证;(2)以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系,由面面角的空间向量求解方法可得答案.【小问1详解】证明:长方体中,平面,又平面,又平面,又平面同理可证,而平面,平面【小问2详解】解:以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系.从而,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,,则,从而,令,则,得平面的一个法向量为由图示得平面与平面所成的角为锐角,平面与平面所成的角的余弦值为19、(1)证明见解析;(2).【解析】(1)连接交于点,连接,则,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形的边长,取中点,可证,如图建系,求得点坐标及坐标,即可求得平面的法向量,根据平面PAD,可求得面的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接交于点,连接,则、E分别为、的中点,所以,又平面平面所以平面(2)由菱形的面积为,,易得菱形边长为,取中点,连接,因为,所以,以点为原点,以方向为轴,方向为轴,方向为轴,建立如图所示坐标系.则所以设平面的法向量,由得,令,则所以一个法向量,因为,,所以平面PAD,所以平面的一个法向量所以,又二面角为锐二面角,所以二面角的余弦值为【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.20、(1)证明见解析(2)(3)【解析】(1)取得中点,连接,可证明四边形是平行四边形,再利用勾股定理的逆定理可得,即,又侧棱底面,可得,利用线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,由线面角的向量公式即可得出;(3)由题意可与左右平面,,上或下面,拼接得到方案,新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出【详解】(1)证明:取的中点,连接,,,四边形是平行四边形,,且,,,,又,侧棱底面,,,平面(2)以为坐标原点,、、的方向为轴的正方向建立空间直角坐标系,则,,,,,设平面的一个法向量为,则,取,则,设与平面所成角为,则,解得,故所求(3)由题意可与左右平面,,上或下面,拼接得到方案新四棱柱共有此4种不同方案写出每一方案下的表面积,通过比较即可得出【点睛】本题主要考查线面垂直的判定定理的应用,利用向量求线面角、柱体的定义应用和表面积的求法,意在考查学生的直观想象能力,逻辑推理能力,数学运算能力及化归与转化能力,属于中档题21、(1),;(2),【解析】(1)设出等比数列的首项和公比,根据已知条件列出关于的方程组,由此求解出的值,则通项公式可求;(2)根据题意表示出斜率关系,然后采用累加法求解出的通项公式.【详解】(1)因为等比数列的公比为,,,由已知,,得,解得或(舍),所以,,由得,所以所以,(2)由直线的斜率为,得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年广州市民政局直属事业单位第一次公开招聘工作人员25人备考题库带答案详解
- 2026年德阳市公安局旌阳区分局关于公开招聘警务辅助人员的备考题库及1套参考答案详解
- 2026年中国联合网络通信有限公司研究院招聘备考题库附答案详解
- 2026年冶金工业规划研究院招聘备考题库带答案详解
- 房屋委托修理合同范本
- 教育教学安全规范制度
- 讨债公司审讯制度规范
- 煤矿班组上班制度规范
- 牙科门诊预约制度规范
- 规范履责记实信息制度
- 直播间设计装修合同范本
- 建设用地报批服务投标方案
- 非静脉曲张上消化道出血的内镜管理指南解读课件
- 新生儿消化道出血
- 2025年可爱的中国测试题及答案
- 油费补助管理办法
- 新食品零售运营管理办法
- 强制性产品认证实施规则 低压电器 低压元器件(CNCA-C03-02:2024)
- 《实践论》《矛盾论》导读课件
- 农村杀猪活动方案
- 种子公司企业管理制度
评论
0/150
提交评论