版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省眉山市仁寿县铧强中学高一数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是A. B.C. D.2.下列函数中为奇函数的是()A. B.C. D.3.函数f(x)=+的定义域为()A. B.C. D.4.若<α<π,化简的结果是()A. B.C. D.5.已知函数,则的值是A.-24 B.-15C.-6 D.126.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则7.下列区间是函数的单调递减区间的是()A. B.C. D.8.已知函数,若,且当时,则的取值范围是A. B.C. D.9.在空间直角坐标系中,点关于平面的对称点是A. B.C. D.10.已知函数则满足的实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______12.已知非零向量、满足,,在方向上的投影为,则_______.13.已知函数的图像恒过定点,则的坐标为_____________.14.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______15.的解集为_____________________________________16.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.013.09.97.010013.010.17.010.0据上述数据描成的曲线如图所示,该曲线可近似的看成函数的图象(1)试根据数据表和曲线,求的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?18.已知函数求函数的最小正周期与对称中心;求函数的单调递增区间19.已知不等式x2+ax+b<0(a,b∈R(1)求实数a,b的值;(2)若集合B=xx<0,求A∩B,20.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)求使x的取值范围21.(1)已知,求的值;(2)已知,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先判断函数为偶函数,且在上单调递增,再依次判断每个选项的奇偶性和单调性得到答案.【详解】易知:函数为偶函数,且在上单调递增A.,函数为偶函数,且当时单调递增,满足;B.为偶函数,且当时单调递减,排除;C.函数为奇函数,排除;D.,函数为非奇非偶函数,排除;故选:【点睛】本题考查了函数的单调性和奇偶性,意在考查学生对于函数性质的综合应用.2、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D3、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.4、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力5、C【解析】∵函数,∴,故选C6、B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系7、D【解析】取,得到,对比选项得到答案.【详解】,取,,解得,,当时,D选项满足.故选:D.8、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.9、C【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为10、B【解析】根据函数的解析式,得出函数的单调性,把不等式,转化为相应的不等式组,即可求解.【详解】由题意,函数,可得当时,,当时,函数在单调递增,且,要使得,则,解得,即不等式的解集为,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.二、填空题:本大题共6小题,每小题5分,共30分。11、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”12、【解析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【点睛】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.13、【解析】由过定点(0,1),借助于图像平移即可.【详解】过定点(0,1),而可以看成的图像右移3个单位,再下移2个点位得到的,所以函数的图像恒过定点即A故答案为:【点睛】指数函数图像恒过(0,1),对数函数图像恒过(1,0).14、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图15、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.16、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)至或至.【解析】(1)根据数据,可得,由,可求,从而可求函数的表达式;(2)由题意,水深,即,从而可求t的范围,即可得解;【详解】解:(1)根据数据,可得,,,,,函数的表达式为;(2)由题意,水深,即,,,,,1,,或,;所以,该船在至或至能安全进港18、(1)最小正周期,对称中心为;(2)【解析】直接利用三角函数关系式的恒等变变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期和对称中心;直接利用整体思想求出函数的单调递增区间【详解】函数,,,所以函数的最小正周期为,令:,解得:,所以函数的对称中心为由于,令:,解得:,所以函数的单调递增区间为【点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题19、(1)a=-1,b=-2(2)A∩B=x-1<x<0【解析】可根据题意条件,此一元二次不等式的解集转化成此一元二次方程的两个跟,然后利用根与系数的关系,即可完成求解;可根据集合A、B的范围分别求解出A∩B,A∪∁R【小问1详解】因为不等式的解集为A=x所以x1=-1,x2=2则有1-a+b=0,4+2a+b=0,解得a=-1,b【小问2详解】因为A=x-1<x<2,所以A∩B=x-1<x<0,∁20、(1)定义域为,奇函数;(2)【解析】(1)只需解不等式组即可得出f(x)的定义域;求f(﹣x)即可得到f(﹣x)=﹣f(x),从而得出f(x)为奇函数;(2)讨论a:a>1,和0<a<1,根据f(x)的定义域及对数函数的单调性即可求得每种情况下原不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 白银熔池熔炼工安全行为竞赛考核试卷含答案
- 眼镜验光师岗前健康知识考核试卷含答案
- 玻璃钢制品手糊工创新思维评优考核试卷含答案
- 人工合成晶体工岗前工作技巧考核试卷含答案
- 香料原料处理工岗前基础安全考核试卷含答案
- 电机装配工岗前安全技能考核试卷含答案
- 石灰煅烧工岗前安全操作考核试卷含答案
- 香料合成工创新思维模拟考核试卷含答案
- 黄酒发酵工安全培训效果评优考核试卷含答案
- 炼焦备煤工创新方法强化考核试卷含答案
- 急救复苏与气管插管-课件
- 英雄(2024年江苏南通中考语文试卷散文阅读试题)
- 氢气使用管理安全培训
- 保育员培训:扎头发技巧与实操
- 2024年延安市市直事业单位选聘工作人员笔试真题
- 特殊作业安全管理监护人培训课件
- 成本限额及配置标准
- 2020高职院校教学能力比赛大学语文课程实施报告(定)
- 化工厂叉车安全操作应急预案
- 长期合作协议书合同书
- DB11∕T 353-2021 城市道路清扫保洁质量与作业要求
评论
0/150
提交评论