河北省秦皇岛中学2026届高二上数学期末检测模拟试题含解析_第1页
河北省秦皇岛中学2026届高二上数学期末检测模拟试题含解析_第2页
河北省秦皇岛中学2026届高二上数学期末检测模拟试题含解析_第3页
河北省秦皇岛中学2026届高二上数学期末检测模拟试题含解析_第4页
河北省秦皇岛中学2026届高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省秦皇岛中学2026届高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古代数学名著《算法统宗》中有这样一个问题:“今有俸粮三百零五石,令五等官(正一品、从一品、正二品、从二品、正三品)依品递差十三石分之,问,各若干?”其大意是,现有俸粮石,分给正一品、从一品、正二品、从二品、正三品这位官员,依照品级递减石分这些俸粮,问,每个人各分得多少俸粮?在这个问题中,正三品分得俸粮是()A.石 B.石C.石 D.石2.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.3.命题“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”4.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.5.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.6.设,则曲线在点处的切线的倾斜角是()A. B.C. D.7.命题“,”的否定是()A., B.,C., D.,8.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内的极大值点有()A.1个 B.2个C.3个 D.4个9.设,分别是双曲线:的左、右焦点,过点作的一条渐近线的垂线,垂足为,,为坐标原点,则双曲线的离心率为()A. B.2C. D.10.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.1111.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.12.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.直线与两坐标轴相交于,两点,则线段的垂直平分线的方程为___________.14.已知直线和直线垂直,则实数___________.15.设在中,角A、B、C所对的边分别为a、b、c,从下列四个条件:①;②;③;④中选出三个条件,能使满足所选条件的存在且唯一的所有c的值为______.16.复数(其中i为虚数单位)的共轭复数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.18.(12分)如图长方体中,,,点为的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.19.(12分)中,内角、、所对的边为、、,.(1)求角的大小;(2)若、、成等差数列,且,求边长的值.20.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边的垂直平分线所在的直线的方程;(2)若面积为5,求点的坐标21.(12分)在平面直角坐标系中,已知,动点M满足(1)求M的轨迹方程;(2)设,点N是的中点,求点N的轨迹方程;(3)设M的轨迹与N的轨迹的交点为P、Q,求22.(10分)已知函数.(1)若函数的图象在处的切线方程为,求的值;(2)若函数在上是增函数,求实数的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令位官员(正一品、从一品、正二品、从二品、正三品)所分得的俸粮数是公差为数列,利用等差数列的前n项和求,进而求出正三品即可.【详解】正一品、从一品、正二品、从二品、正三品这位官员所分得的俸粮数记为数列,由题意,是以为公差的等差数列,且,解得.故正三品分得俸粮数量为(石).故选:D.2、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.3、C【解析】由全称命题的否定是特称命题即得.【详解】“任意”改为“存在”,否定结论即可.命题“,”的否定形式是“,”.故选:C.4、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.5、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.6、C【解析】根据导数的概念可得,再利用导数的几何意义即可求解.【详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C7、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D8、B【解析】利用极值点的定义求解.【详解】由导函数的图象知:函数在内,与x轴有四个交点:第一个点处导数左正右负,第二个点处导数左负右正,第三个点处导数左正右正,第四个点处导数左正右负,所以函数在开区间内的极大值点有2个,故选:B9、D【解析】先求过右焦点且与渐近线垂直的直线方程,与渐近线方程联立求点P的坐标,再用两点间的距离公式,结合已知条件,得到关于a,c的关系式.【详解】双曲线的左右焦点分别为、,一条渐近线方程为,过与这条渐近线垂直的直线方程为,由,得到点P的坐标为,又因为,所以,所以,所以.故选:D10、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.11、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D12、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由直线的方程求出直线的斜率以及,两点坐标,进而可得线段的垂直平分线的斜率以及线段的中点坐标,利用点斜式即可求解.【详解】由直线可得,所以直线的斜率为,所以线段的垂直平分线的斜率为,令可得;令可得;即,,所以线段的中点坐标为,所以线段的垂直平分线的方程为,整理得.故答案为:.14、【解析】根据两条直线相互垂直的条件列方程,解方程求得m的值.【详解】由于两条直线垂直,故,解得.故答案为:.15、,##,【解析】由①②结合正弦定理可求出,但是角不唯一,故所选条件中不能同时有①②,只能是①③④或②③④,若选①③④,结合余弦定理可求,若选②③④,结合正弦定理即可求解【详解】由①②结合正弦定理,所以,此时角不唯一,所以故所选条件中不能同时有①②,所以只能是①③④或②③④,若选①③④,即,,,由余弦定理可得,解得,若选②③④,即,,,因为,,所以,由正弦定理得,,故答案为:,16、##【解析】根据共轭复数的概念,即可得答案.【详解】由题意可知:复数(其中i为虚数单位)的共轭复数,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)【解析】(1)根据线面垂直的性质和判定可得证;(2)以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系,由面面角的空间向量求解方法可得答案.【小问1详解】证明:长方体中,平面,又平面,又平面,又平面同理可证,而平面,平面【小问2详解】解:以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系.从而,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,,则,从而,令,则,得平面的一个法向量为由图示得平面与平面所成的角为锐角,平面与平面所成的角的余弦值为18、(1)见解析(2)见解析(3)【解析】(1)作辅助线,由中位线定理证明,再由线面平行的判定定理证明即可;(2)连接,由勾股定理证明,,再结合线面垂直的判定定理证明即可;(3)建立空间直角坐标系,利用向量法求面面角的余弦值即可.【详解】(1)连接交与点,连接四边形为正方形,点为的中点又点为的中点,平面,平面平面(2)连接由勾股定理可知,,则同理可证,平面平面(3)建立如下图所示的空间直角坐标系显然平面的法向量即为平面的法向量,不妨设为由(2)可知平面,即平面的法向量为又二面角是钝角二面角的余弦值为【点睛】关键点睛:在第一问中,关键是利用中位线定理找到线线平行,再由定义证明线面平行;在第二问中,关键是利用勾股定理证明线线垂直,从而得出线面垂直;在第三问中,关键是建立坐标系,利用向量法求面面角的余弦值.19、(1);(2).【解析】(1)利用正弦定理可求得的值,结合角的取值范围可求得角的值;(2)由三角形的面积公式可求得的值,由已知可得,利用余弦定理可得出关于的等式,即可求得边的长.【小问1详解】解:因为,由正弦定理可得,,则,可得,,,因此,.【小问2详解】解:,可得,因为、、成等差数列,则,由余弦定理可得,解得.20、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或21、(1)(2)(3)【解析】(1)设,根据向量数量积求解即可得答案;(2)设,,进而根据相关点法求解即可;(3)根据题意得弦由两圆相交得,进而根据几何法弦长即可得答案.【小问1详解】解:设,则,所以,即所以M的轨迹方程为.【小问2详解】解:设,,因为点N是的中点,所以,即,又因为在上,所以,即.所以点N的轨迹方程为.【小问3详解】解:因为M的轨迹与N的轨迹分别为,,是两个圆.所以两个方程作差得直线所在的方程,所以圆到:的距离为,所以22、(1);(2).【解析】(1)先对函数求导,再根据在处

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论