版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届吉林省五地六市高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.83.“,”是“函数的图象关于点中心对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}5.直线(为实常数)的倾斜角的大小是A B.C. D.6.设,,,则下列正确的是()A. B.C. D.7.已知函数fx=x+a,x≤0,x2,x>0,那么“a=0”是A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知函数的图象如图所示,则函数的图象为A.B.C.D.9.已知集合,,若,则a的取值范围是A B.C. D.10.已知函数则等于()A.-2 B.0C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.两平行线与的距离是__________12.设,则________13.已知一个扇形的面积为,半径为,则其圆心角为___________.14.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________15.已知,均为锐角,,,则的值为______16.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某运营商为满足用户手机上网的需求,推出甲、乙两种流量包月套餐,两种套餐应付的费用(单位:元)和使用的上网流量(单位:GB)之间的关系如图所示,其中AB,DE都与横轴平行,BC与EF相互平行(1)分别求套餐甲、乙的费用(元)与上网流量x(GB)的函数关系式f(x)和g(x);(2)根据题中信息,用户怎样选择流量包月套餐,能使自己应付的费用更少?18.已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集(1)当t=4时,求A∪B及A∩∁RB;(2)若A∪B=A,求实数t的取值范围19.如图,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,点E为线段BC的中点,点F在线段AD上,且EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC,点P为几何体中线段AD的中点(Ⅰ)证明:平面ACD⊥平面ACF;(Ⅱ)证明:CD∥平面BPE20.已知函数(,且).(1)若,试比较与的大小,并说明理由;(2)若,且,,三点在函数的图像上,记的面积为,求的表达式,并求的值域.21.已知函数.(1)求在闭区间的最大值和最小值;(2)设函数对任意,有,且当时,.求在区间上的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B2、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.3、A【解析】先求出函数的图象的对称中心,从而就可以判断.【详解】若函数的图象关于点中心对称,则,,所以“,”是“函数的图象关于点中心对称”的充分不必要条件故选:A4、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.5、D【解析】计算出直线的斜率,再结合倾斜角的取值范围可求得该直线的倾斜角.【详解】设直线倾斜角为,直线的斜率为,所以,,则.故选:D.【点睛】本题考查直线倾斜角的计算,一般要求出直线的斜率,考查计算能力,属于基础题.6、D【解析】计算得到,,,得到答案.【详解】,,.故.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.7、A【解析】利用充分条件和必要条件的定义判断.【详解】当a=0时,fx=x,x≤0当函数fx是增函数时,则a≤0故选:A8、A【解析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【详解】解:通过函数的图象可知:,当时,可得,即.函数是递增函数;排除C,D.当时,可得,,,故选A【点睛】本题考查了指数函数的图象和性质,属于基础题.9、D【解析】化简集合A,根据,得出且,从而求a的取值范围,得到答案详解】由题意,集合或,;若,则且,解得,所以实数的取值范围为故选D【点睛】本题主要考查了对数函数的运算性质,以及集合的运算问题,其中解答中正确求解集合A,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】根据分段函数,根据分段函数将最终转化为求【详解】根据分段函数可知:故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.12、【解析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【详解】解:因为,所以,所以故答案为:113、【解析】结合扇形的面积公式即可求出圆心角的大小.【详解】解:设圆心角为,半径为,则,由题意知,,解得,故答案为:14、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.15、【解析】直接利用两角的和的正切关系式,即可求出结果【详解】已知,均锐角,,,则,所以:,故故答案为【点睛】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型16、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)=30, (2)答案见解析【解析】(1)利用函数的图像结合分段函数的性质求出解析式;(2)由f(x)=g(x),得x=30,结合图像选择合适的套餐.【小问1详解】对于套餐甲:当0≤x≤20时,f(x)=30,当x>20时,设f(x)=kx+b,可知函数图象经过点(20,30),所以20k+b=3050k+b=120,解得k=3b=-30故f(x)=对于套餐乙:当0≤x≤50时,g(x)=60,当x>50时,根据题意,可设g(x)=3x+d,将(50,60)代入可得d=-90故g(x)=【小问2详解】由f(x)=g(x),可得3x-30=60,解得x=30由函数图象可知:若用户使用的流量x∈[0,30若用户使用的流量x=30时,选择两种套餐均可;若用户使用的流量x∈(30,+∞18、(1)见解析;(2)【解析】(1)由二次不等式的解法得,由集合的交、并、补的运算得,进而可得解(2)由集合间的包含关系得:因为,得:,讨论①,②时,运算即可得解.【详解】(1)解二次不等式x2-7x+6<0得:1<x<6,即A=(1,6),当t=4时,B=(0,4),CRB=,所以A∪B=(0,6),A∩CRB=[4,6),故答案为A∪B=(0,6),A∩CRB=[4,6),(2)由A∪B=A,得:B⊆A,①当4-t≥t即t≤2时,B=,满足题意,②B≠时,由B⊆A得:,解得:2<t≤3,综合①②得:实数t的取值范围为:t≤3,故答案为t≤3【点睛】本题考查了二次不等式的解法、集合的交、并、补的运算及集合间的包含关系,属简单题19、证明过程详见解析【解析】(Ⅰ)证明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理证明FC⊥CD,即可证明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中点Q,连接QE、QP,证明BPQE四点共面,再证明CD∥EQ,从而证明CD∥平面EBPQ,即为CD∥平面BPE【详解】(Ⅰ)由题意知,四边形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,FC=AB=2,CD=AB=2,∴FD2=FC2+CD2,∴FC⊥CD;又FC∩AF=F,∴CD⊥平面ACF;又CD⊂平面ACD,∴平面ACD⊥平面ACF;(Ⅱ)如图所示,取DF的中点Q,连接QE、QP,则QP∥AF,又AF∥BE,∴PQ∥BF,∴BPQE四点共面;又EC=2,QD=DF=2,且DF∥EC,∴QD与EC平行且相等,∴QECD为平行四边形,∴CD∥EQ,又EQ⊂平面EBPQ,CD⊄平面EBPQ,∴CD∥平面EBPQ,即CD∥平面BPE【点睛】本题主要考查直线和平面平行与垂直的判定应用问题,也考查了平面与平面的垂直应用问题,是中档题20、(1)当时,;当时,;(2);【解析】(1)根据题意分别代入求出,再比较的大小,利用函数的单调性即可求解.(2)先表示出的表达式,再根据函数的单调性求的值域.【详解】解:(1)当时,在上单调递减;,,又,,故;同理可得:当时,在上单调递增;,,又,,故,综上所述:当时,;当时,;(2)由题意可知:,,,故在上单调递增;令,,当时,在上单调递增;故在上单调递减;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学第四学年(视觉艺术)创作创新阶段测试题及答案
- 2026年智能场景面板项目项目建议书
- 2025年本科工业设计(产品造型设计)试题及答案
- 2025年大学大一(建筑学)建筑设计基础原理测试题及答案
- 2026年智能香氛夜灯项目评估报告
- 2026年水产品营销(营销规范)试题及答案
- 2026年智能卫浴健康融合项目可行性研究报告
- 2025年大学大二(印刷材料)纸张性能检测阶段测试试题及答案
- 2026年美甲设计(渐变美甲工艺)试题及答案
- 多环芳烃暴露人群营养支持治疗策略
- 2025年物业管理中心工作总结及2026年工作计划
- 雨课堂学堂在线学堂云军事理论国防大学单元测试考核答案
- 马路切割承包协议书
- 多源医疗数据融合的联邦学习策略研究
- 2025至2030中国工业边缘控制器行业运营态势与投资前景调查研究报告
- 磁电感应式传感器课件
- 学校控辍保学工作流程及四书一表一单
- 2026届湖南省常德市石门一中生物高二第一学期期末统考试题含解析
- 20052-2024电力变压器能效限定值及能效等级
- 冷渣机调整课件
- 地埋式生活污水处理工艺技术方案
评论
0/150
提交评论