版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市东城区第二十二中学高二数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在下列四条抛物线中,焦点到准线的距离为1的是()A. B.C. D.2.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.3.若是等差数列的前项和,,则()A.13 B.39C.45 D.214.已知实数成等比数列,则圆锥曲线的离心率为()A. B.2C.或2 D.或5.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.6.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.7.函数的最大值为()A.32 B.27C.16 D.408.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则 B.若,则平分C.若,则 D.若,延长AO交直线于点D,则D,B,N三点共线9.执行如图所示的程序框图,则输出S的值是()A. B.C. D.10.如图,、分别是椭圆的左顶点和上顶点,从椭圆上一点向轴作垂线,垂足为右焦点,且,点到右准线的距离为,则椭圆方程为()A. B.C. D.11.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.512.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若过点作圆的切线,则切线方程为___________.14.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程15.如图,在四棱锥中,O是AD边中点,底面ABCD..在底面ABCD中,,,,.(1)求证:平面POC;(2)求直线PC与平面PAB所成角的正弦值.16.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且,,数列是公差不为0的等差数列,满足,且,,成等比数列.(1)求数列和通项公式;(2)设,求数列的前项和.18.(12分)已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.19.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.20.(12分)著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间均分为三段,去掉中间的区间段记为第一次操作;再将剩下的两个闭区间,分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为.(1)求第二次操作后的“康托尔三分集”;(2)定义的区间长度为,记第n次操作后剩余的各区间长度和为,求;(3)记n次操作后“康托尔三分集”的区间长度总和为,若使不大于原来的,求n的最小值.(参考数据:,)21.(12分)自2021年秋季起,江西省普通高中起始年级全面实施新课程改革,为了迎接新高考,某校举行物理和化学等选科考试,其中600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组,第二组,第三组,第四组,第五组.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同(1)求a,b的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1)22.(10分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意可知,然后分析判断即可【详解】由题意知,即可满足题意,故A,B,C错误,D正确.故选:D2、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.3、B【解析】先根据等差数列的通项公式求出,然后根据等差数列的求和公式及等差数列的下标性质求得答案.【详解】设等差数列的公差为d,则,则.故选:B.4、C【解析】根据成等比数列求得,再根据离心率计算公式即可求得结果.【详解】因为实数成等比数列,故可得,解得或;当时,表示焦点在轴上的椭圆,此时;当时,表示焦点在轴上的双曲线,此时.故选:C.5、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.6、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.7、A【解析】利用导数即可求解.【详解】因为,所以当时,;当时,.所以函数在上单调递增;在上单调递增,,因此,的最大值为.故选:A8、D【解析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可判断D.【详解】如图,若,则,C的焦点为,因为,所以,直线的方程为,整理得,与抛物线方程联立得,解得或,所以,所以,选项A错误;时,因为,所以.又,,所以不平分,选项B不正确;若,则,C的焦点为,因为,所以,直线的方程为,所以,所以,选项C错误;若,则,C的焦点为,因为,所以,直线的方程为,所以,直线的方程为,延长交直线于点D,所以则,所以D,B,N三点共线,选项D正确;故选:D.9、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C10、A【解析】设椭圆方程为,设该椭圆的焦距为,则,求出点的坐标,根据可得出,可得出,,结合已知条件求得的值,可得出、的值,即可得出椭圆的方程.【详解】设椭圆方程为,设该椭圆的焦距为,则,由图可知,点第一象限,将代入椭圆方程得,得,所以,点,易知点、,,,因为,则,得,可得,则,点到右准线的距离为为,则,,因此,椭圆的方程为.故选:A.11、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C12、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】根据圆心到切线的距离等于圆的半径即可求解.【详解】由题意可知,,故在圆外,则过点做圆的切线有两条,且切线斜率必存在,设切线为,即,则圆心到直线的距离,解得或,故切线方程为或故答案为:或14、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.15、(1)证明见解析(2)【解析】(1)由题意,证明BCOA是平行四边形,从而可得,然后根据线面平行的判断定理即可证明;(2)证明BCDO是平行四边形,从而可得,由题意,可建立以为轴建立空间直角坐标系,求出平面ABP的法向量,利用向量法即可求解直线PC与平面PAB所成角的正弦值为.【小问1详解】证明:由题意,又,所以BCOA是平行四边形,所以,又平面POC,平面POC,所以平面POC;【小问2详解】解:,,所以BCDO是平行四边形,所以,,而,所以,以为轴建立空间直角坐标系,如图,则,设平面ABP的一个法向量为,则,取x=1,则,,所以,设直线PC与平面PAB所成角为,则,所以直线PC与平面PAB所成角的正弦值为.16、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据,求出是以1为首项,3为公比的等比数列,求出的通项公式,求出的公差,进而求出的通项公式;(2)分组求和.【小问1详解】因为①,所以当时,②,①-②得:,即③,令得:,满足③,综上:是以1为首项,3为公比的等比数列,故,设的公差为d,则,因为,所以,解得:或0(舍去),所以【小问2详解】,则18、(1);(2)30.【解析】(1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求数列的通项公式;(2)利用等差数列求和公式求和,再利用二次函数求得最值即可.【详解】解:(1)由题意得,数列公差为,则解得:,∴(2)由(1)可得,∴∵,∴当或时,取得最大值【点睛】本题考查利用基本量求解等差数列的通项公式,以及前n项和及最值,属基础题19、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.20、(1)(2)(3)【解析】(1)根据“康托尔三分集”的定义,即可求得第二次操作后的“康托尔三分集”;(2)根据“康托尔三分集”的定义,分别求得前几次的剩余区间长度的和,求得其通项公式,即可求解;(3)由(2)可得第次操作剩余区间的长度和为,结合题意,得到,利用对数的运算公式,即可求解.【小问1详解】解:根据“康托尔三分集”的定义可得:第一次操作后的“康托尔三分集”为,第二次操作后的“康托尔三分集”为;【小问2详解】解:将定义的区间长度为,根据“康托尔三分集”的定义可得:每次去掉的区间长后组成的数为以为首项,为公比的等比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/Z 133-2025纳米技术纳米材料导致蛋白质二级结构变化评估紫外圆二色光谱法
- 妇产科VR分娩模拟与产前沟通策略
- 大数据在社区慢病路径管理中的价值
- 多肽药物的单分子修饰与活性提升
- 2025年大学体育保健学(运动营养)试题及答案
- 2026年网络营销(营销规范)试题及答案
- 2026年风光热储多能互补项目评估报告
- 2025年中职灯具安装(线路布置)试题及答案
- 2026年早期教育(亲子互动游戏案例)试题及答案
- 多灶性难治性癫痫的激光消融治疗策略
- 新疆维吾尔自治区普通高中2026届高二上数学期末监测试题含解析
- 2026年辽宁金融职业学院单招职业技能测试题库附答案解析
- 2026北京海淀初三上学期期末语文试卷和答案
- 2024-2025学年北京市东城区五年级(上)期末语文试题(含答案)
- 人工智能在医疗领域的应用
- 2025年广东省茂名农垦集团公司招聘笔试题库附带答案详解
- 【10篇】新部编五年级上册语文课内外阅读理解专项练习题及答案
- 南京市雨花台区医疗保险管理中心等单位2025年公开招聘编外工作人员备考题库有完整答案详解
- 矿业企业精益管理实施方案与案例
- 2026年共青团中央所属事业单位社会人员公开招聘18人备考题库及答案详解(新)
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库带答案详解
评论
0/150
提交评论