版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东湛江市大成中学2026届高二数学第一学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图①所示,将一边长为1的正方形沿对角线折起,形成三棱锥,其主视图与俯视图如图②所示,则左视图的面积为()A. B.C. D.2.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得3.已知,,若直线上存在点P,满足,则l的倾斜角的取值范围是()A. B.C D.4.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率5.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.326.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)7.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.8.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为()A. B.C. D.9.已知数列中,且满足,则()A.2 B.﹣1C. D.10.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.14411.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件12.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A.10种 B.12种C.16种 D.24种二、填空题:本题共4小题,每小题5分,共20分。13.命题“,”的否定是____________.14.经过点,圆心在x轴正半轴上,半径为5的圆的方程为________15.已知函数,则曲线在点处的切线方程为______.16.已知、分别为双曲线的左、右焦点,为双曲线右支上一点,满足,直线与圆有公共点,则双曲线的离心率的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线经过两条直线和的交点,且与直线垂直(1)求直线的一般式方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程18.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.19.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.20.(12分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程21.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)22.(10分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由视图确定该几何体的特征,即可得解.【详解】由主视图可以看出,A点在面上的投影为的中点,由俯视图可以看出C点在面上的投影为的中点,所以其左视图为如图所示的等腰直角三角形,直角边长为,于是左视图的面积为故选:A.2、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C3、A【解析】根据题意,求得直线恒过的定点,数形结合只需求得线段与直线有交点时的斜率,结合斜率和倾斜角的关系即可求得结果.【详解】对直线,变形为,故其恒过定点,若直线存在点P,满足,只需直线与线段有交点即可.数形结合可知,当直线过点时,其斜率取得最大值,此时,对应倾斜角;当直线过点时,其斜率取得最小值,此时,对应倾斜角为.根据斜率和倾斜角的关系,要满足题意,直线的倾斜角的范围为:.故选:A.4、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断5、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.6、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.7、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A8、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D9、C【解析】首先根据数列的递推公式求出数列的前几项,即可得到数列的周期性,即可得解;【详解】解:因为且,所以,,,所以是周期为的周期数列,所以,故选:C10、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.11、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.12、A【解析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、,【解析】根据全称命题量词的否定即可得出结果.【详解】命题“”的否定是“,”故答案为:14、【解析】设圆方程为,代入原点计算得到答案.【详解】设圆方程为经过点,代入圆方程则圆方程为故答案为【点睛】本题考查了圆方程的计算,设出圆方程是解题的关键.15、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.16、【解析】过点作于,过点作于,利用双曲线的定义以及勾股定理可求得,由已知可得,可得出关于、的齐次不等式,结合可求得的取值范围.【详解】过点作于,过点作于,因为,所以,又因为,所以,故,又因为,且,所以,因此,所以,又因为直线与圆有公共点,所以,故,即,则,所以,又因为双曲线的离心率,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意求出两直线的交点,再求出所求直线的斜率,用点斜式写出直线的方程;(2)根据题意求出圆的半径,由圆心写出圆的标准方程【小问1详解】解:由题意知,解得,直线和的交点为;设直线的斜率为,与直线垂直,;直线的方程为,化为一般形式为;【小问2详解】解:设圆的半径为,则圆心为到直线的距离为,由垂径定理得,解得,圆的标准方程为18、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.19、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.20、(1)(2)或【解析】(1)抛物线的方程为,利用抛物线的定义求出点N,代入抛物线方程即可求解.(2)设直线的方程为,将直线与抛物线方程联立,利用韦达定理以及焦半径公式可得或,即求.【小问1详解】抛物线的方程为,设,依题意,由抛物线定义,即.所以,又由,得,解得(舍去),所以抛物线的方程为.【小问2详解】由(1)得,设直线的方程为,,,由,得.因为,故所以.由题设知,解得或,因此直线方程为或.21、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2)因为直线l与抛物线有两个交点,所以k≠0,得,代入y2=4x,得,且恒成立,则,y1y2=-4,所以又点O到直线l的距离,所以,解得,即【点睛】本题主要考查直线与抛物线的位置关系的相关问题,意在考查综合利用所学知识解决问题能力和较强
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学第一学年(汉语言文学)写作基础训练试题及答案
- 2025年中职茶叶生产与加工(茶叶加工工艺)试题及答案
- 2025年高职模具拆装(零件安装)试题及答案
- 2026年制笔技术(笔尖制造)试题及答案
- 多模态可穿戴数据在糖尿病个体化医疗中的实践策略
- 2026年智能车载磁吸充电线项目可行性研究报告
- 2026年数据分类分级智能管理项目可行性研究报告
- 多学科会诊模式对胶质瘤微创与开颅手术选择的影响
- 2026年智能车载座椅加热系统项目可行性研究报告
- 多国基因数据支持的个体化治疗策略
- 工程维保三方合同
- 地铁车辆检修安全培训
- 造血干细胞移植临床应用和新进展课件
- GB/T 10802-2023通用软质聚氨酯泡沫塑料
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 杰青优青学术项目申报答辩PPT模板
- 宿舍入住申请书
- 深圳中核海得威生物科技有限公司桐城分公司碳13-尿素原料药项目环境影响报告书
- 2023年全国高考体育单招文化考试数学试卷真题及答案
- GB/T 28733-2012固体生物质燃料全水分测定方法
- GB/T 14404-2011剪板机精度
评论
0/150
提交评论