版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省省级示范高中联合体2026届高一数学第一学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列满足,且对任意的都有,则数列的前100项的和为A. B.C. D.2.化简()A. B.C. D.3.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B.C. D.4.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.85.函数的图像可能是().A. B.C. D.6.最小正周期为,且在区间上单调递增的函数是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=7.“是第一象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数与的图象在上的交点有()A.个 B.个C.个 D.个9.下列函数中在定义域上为减函数的是()A. B.C. D.10.下列每组函数是同一函数的是A.f(x)=x-1, B.f(x)=|x-3|,C.,g(x)=x+2 D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数定义域为,若满足①在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且是“半保值函数”,则的取值范围为________12.若,,三点共线,则实数的值是__________13.若,则________.14.若函数与函数的最小正周期相同,则实数______15.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度16.函数的单调增区间为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简求值:(1).(2)已知都为锐角,,求值.18.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.19.已知函数是定义在R上的奇函数,且当时,,现已画出函数f(x)在y轴左侧的图象,如图所示(1)请补出函数,剩余部分的图象,并根据图象写出函数,的单调增区间;(2)求函数,的解析式;(3)已知关于x的方程有三个不相等的实数根,求实数的取值范围20.在单位圆中,已知第二象限角的终边与单位圆的交点为,若.(1)求、、的值;(2)分别求、、的值.21.已知函数.(1)求函数的单调区间;(2)若函数在有且仅有两个零点,求实数取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先利用累加法求出,再利用裂项相消法求解.【详解】∵,∴,又,∴∴,∴数列的前100项的和为:故选B【点睛】本题主要考查数列通项的求法,考查裂项相消求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、D【解析】利用辅助角公式化简即可.【详解】.故选:D3、A【解析】由函数(,且)在上的最大值为4,分情况讨论得到,从而可得函数单调递增,而在上是减函数,所以可得,由此可求得的取值范围【详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得故选:A【点睛】此题考查对数函数的性质,考查指数函数的性质,考查分类讨论思想,属于基础题.4、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.5、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.6、B【解析】选项、先利用辅助角公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项先利用二倍角的正弦公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项直接利用正切函数图象的性质去判断即可.【详解】对于选项,,最小正周期为,单调递增区间为,即,该函数在上单调递增,则选项错误;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项正确;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项错误;对于选项,,最小正周期为,在为单调递增,则选项错误;故选:.7、B【解析】根据充分、必要条件的定义,结合角的概念,即可得答案.【详解】若是第一象限角,则,无法得到一定属于,充分性不成立,若,则一定第一象限角,必要性成立,所以“是第一象限角”是“”的必要不充分条件.故选:B8、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.9、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C10、B【解析】分析:根据题意,先看了个函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.详解:对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选B.点睛:本题主要考查了判断两个函数是否是同一个函数,其中解答中考查了函数的定义域的计算和函数的三要素的应用,着重考查了推理与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数且是“半保值函数”,且定义域为,由时,在上单调递增,在单调递增,可得为上的增函数;同样当时,仍为上的增函数,在其定义域内为增函数,因为函数且是“半保值函数”,所以与的图象有两个不同的交点,所以有两个不同的根,即有两个不同的根,即有两个不同的根,可令,,即有有两个不同正数根,可得,且,解得.【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化12、5【解析】,,三点共线,,即,解得,故答案为.13、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.14、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力15、410【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.16、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式;(2)先计算出的值,然后根据角的配凑以及两角差的余弦公式求解出的值.【详解】(1)解:原式;(2)解:因为都为锐角,,所以则.18、(1)(2)【解析】(1)根据为等腰直角三角形可求解(2)根据三角函数定义分别得到、的坐标,再代入中可求解【小问1详解】由题意可知周期,所以,,为等腰直角三角形,所以.【小问2详解】由(1)可得,所以,,所以,点,都落在曲线()上,所以可得,,,可得,,由,得,(),所以.19、(1)图象见解析,函数的单调增区间为;(2);(3).【解析】(1)根据奇函数的图象特征即可画出右半部分的图象,结合图象,即可得出单调增区间;(2)根据函数的奇偶性即可直接求出函数的解析式;(3)由(2)得出函数的解析式,画出函数图象,利用数形结合的数学思想即可得出m的取值范围.【小问1详解】剩余的图象如图所示,有图可知,函数的单调增区间为;【小问2详解】因为当时,,所以当时,则,有,由为奇函数,得,即当时,,又,所以函数的解析式为;【小问3详解】由(2)得,,作出函数与图象,如图,由图可知,当时,函数与图象有3个交点,即方程有3个不等的实根.所以m的取值范围为.20、(1),,(2),,【解析】(1)先由三角函数的定义得到,再利用同角三角函数基本关系进行求解;(2)利用诱导公式进行化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期合并精神疾病的管理策略
- 妊娠ITP精准医疗策略探索
- 天然高分子降解产物对神经再生的促进策略
- 大数据驱动的社区慢病高危人群动态管理
- 科学考试真题及答案
- 多重耐药菌所致慢性气道感染的抗菌降阶梯策略
- 多语言OSCE考核术语的本地化策略
- 招工平台考试模板及答案
- 2025年高职物业管理(物业管理法规)试题及答案
- 2025年高职藏医学(藏药应用)试题及答案
- 2026年共青团中央所属单位高校毕业生公开招聘66人备考题库及参考答案详解
- 2026年6级英语模拟真题及答案
- 2025内蒙古鄂尔多斯市委政法委所属事业单位引进高层次人才3人考试题库含答案解析(夺冠)
- 2025年全国单独招生考试综合试卷(附答案) 完整版2025
- 2025-2026学年外研版八年级上册英语期末模拟考试题(含答案)
- 洗衣液宣传课件
- “五个带头”方面对照发言材料二
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
- RB/T 218-2017检验检测机构资质认定能力评价机动车检验机构要求
- GB/T 24128-2009塑料防霉性能试验方法
- GB/T 14689-2008技术制图图纸幅面和格式
评论
0/150
提交评论