广东省韶关市新丰县一中2026届高一数学第一学期期末学业质量监测试题含解析_第1页
广东省韶关市新丰县一中2026届高一数学第一学期期末学业质量监测试题含解析_第2页
广东省韶关市新丰县一中2026届高一数学第一学期期末学业质量监测试题含解析_第3页
广东省韶关市新丰县一中2026届高一数学第一学期期末学业质量监测试题含解析_第4页
广东省韶关市新丰县一中2026届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省韶关市新丰县一中2026届高一数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线l过点A(3,4),且与点B(-3,2)的距离最远,则直线l的方程为()A.3x-y-5=0 B.3x-y+5=0C.3x+y+13=0 D.3x+y-13=02.设函数,若,则A. B.C. D.3.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.4.在中,,.若边上一点满足,则()A. B.C. D.5.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+6.若函数是偶函数,则满足的实数的取值范围是A. B.C. D.7.若圆上至少有三个不同的点到直线的距离为,则的取值范围是()A. B.C. D.8.设m、n是不同的直线,、、是不同的平面,有以下四个命题:(1)若、,则(2)若,,则(3)若、,则(4)若,,则其中真命题的序号是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)9.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为()A. B.C. D.10.已知,,且,则的最小值为()A.2 B.3C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)12.已知角的终边上有一点,则________.13.当时,的最小值为______14.已知函数定义域为,若满足①在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且是“半保值函数”,则的取值范围为________15.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____16.若函数在区间上单调递减,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;18.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.19.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.20.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值21.在等腰梯形中,已知,,,,动点和分别在线段和上(含端点),且,且(、为常数),设,.(Ⅰ)试用、表示和;(Ⅱ)若,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意确定直线斜率,再根据点斜式求直线方程.【详解】由题意直线l与AB垂直,所以,选D.【点睛】本题考查直线斜率与直线方程,考查基本求解能力.2、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质3、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A4、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.5、B【解析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【点睛】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.6、D【解析】结合为偶函数,建立等式,利用对数计算性质,计算m值,结合单调性,建立不等式,计算x范围,即可【详解】,,,,令,则,则,当,递增,结合复合函数单调性单调递增,故偶函数在上是增函数,所以由,得,.【点睛】本道题考查了偶函数性质和函数单调性知识,结合偶函数,计算m值,利用单调性,建立关于x的不等式,即可7、D【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可【详解】由题,圆标准方程为,所以圆心为,半径,因为圆上至少有三个不同点到直线的距离为,所以,所以圆心到直线的距离小于等于,即,解得,故选:D【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想8、D【解析】故选D.9、C【解析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项【详解】解:函数在上图象关于轴对称;是偶函数;又时,;在,上为周期为2的周期函数;又,时,;,;故选:【点睛】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题10、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)12、【解析】直接根据任意角的三角函数的定义计算可得;【详解】解:因为角的终边上有一点,则所以,所以故答案为:【点睛】考查任意角三角函数的定义的应用,考查计算能力,属于基础题13、【解析】将所求代数式变形为,利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当即时等号成立,所以的最小值为,故答案为:.14、【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数且是“半保值函数”,且定义域为,由时,在上单调递增,在单调递增,可得为上的增函数;同样当时,仍为上的增函数,在其定义域内为增函数,因为函数且是“半保值函数”,所以与的图象有两个不同的交点,所以有两个不同的根,即有两个不同的根,即有两个不同的根,可令,,即有有两个不同正数根,可得,且,解得.【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化15、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.16、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平面【详解】(1)因为、分别为、的中点,所以.又因为平面,所以平面;(2)因为,为的中点,所以,又因为平面平面,平面平面,且平面,所以平面,平面,平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18、(1);(2)或.【解析】(1)先求得集合A,当时,求得集合B,根据交集、补集运算的概念,即可得答案.(2)根据题意,可得,根据,可得或,即可得答案【详解】(1),当时,所以;(2)因为,所以,又因为,所以或,解得或.19、(1)是等腰直角三角形(2)A,B,C,D四点共圆;理由见解析【解析】(1)利用两点间距离公式可求得,再利用斜率公式可得到,即可判断三角形形状;(2)由(1)先求得的外接圆,再判断点是否在圆上即可【详解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四点共圆;由(1),设的外接圆的圆心为,则,即,解得,此时,所以的外接圆的方程为,将D点坐标代入方程得,即D点在的外接圆上.∴A,B,C,D四点共圆【点睛】本题考查两点间距离公式的应用,考查斜率公式的应用,考查三角形的外接圆,考查圆的方程,考查运算能力20、(1)(2)【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式,(2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果【小问1详解】由图可知的周期T满足,得又因为,所以,解得又在处取得最小值,即,得,所以,,解得,因为,所以.由,得,所以综上,【小问2详解】当时,,所以.由知此时记四边形OMQN的面积为S,则又因为,所以,所以当,即时,取得最大值所以四边形OMQN面积的最大值是21、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)过点作,交于点,证明出,从而得出,然后利用向量加法的三角形法则可将和用、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论