版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省鄂州市吴都中学高一上数学期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆锥的底面半径为,当圆锥的体积为时,该圆锥的母线与底面所成角的正弦值为()A. B.C. D.2.已知函数的图象与函数的图象关于直线对称,函数是满足的偶函数,且当时,,若函数有3个零点,则实数的取值范围是()A. B.C. D.3.,,则p是q的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增5.已知函数,,则函数的值域为()A. B.C. D.6.已知平行四边形的对角线相交于点点在的内部(不含边界).若则实数对可以是A. B.C. D.7.已知函数,,则函数的值域为()A B.C. D.8.已知函数的定义域为,命题为奇函数,命题,那么是的()A.充分必要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件9.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件10.若函数是定义在上的偶函数,则()A.1 B.3C.5 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________12.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)13.函数满足,且在区间上,则的值为____14.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________15.若“”是“”的必要不充分条件,则实数的取值范围为___________.16.函数的图象必过定点___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.18.已知向量,,设函数=+(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域19.如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,D为AC中点(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A120.已知.(1)求的最小正周期;(2)求的单调增区间;(3)当时,求的值域.21.已知函数.(1)当时,求在上的值域;(2)当时,已知,若有,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】首先理解圆锥体中母线与底面所成角的正弦值为它的高与母线的比值,结合圆锥的体积公式及已知条件即可求出正弦值.【详解】如图,根据圆锥的性质得底面圆,所以即为母线与底面所成角,设圆锥的高为,则由题意,有,所以,所以母线的长为,则圆锥的母线与底面所成角的正弦值为.故选:A【点睛】本题考查了圆锥的体积,线面角的概念,考查运算求解能力,是基础题.本题解题的关键在于根据圆锥的性质得即为母线与底面所成角,再根据几何关系求解.2、B【解析】把函数有3个零点,转化为有3个不同根,画出函数与的图象,转化为关于的不等式组求解即可.【详解】由函数的图象与函数的图象关于直线对称,得,函数是最小正周期为2的偶函数,当时,,函数有3个零点,即有3个不同根,画出函数与的图象如图:要使函数与的图象有3个交点,则,且,即.∴实数的取值范围是.故选:B.3、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B4、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.5、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B6、B【解析】分析:根据x,y值确定P点位置,逐一验证.详解:因为,所以P在线段BD上,不合题意,舍去;因为,所以P在线段OD外侧,符合题意,因为,所以P在线段OB内侧,不合题意,舍去;因为,所以P在线段OD内侧,不合题意,舍去;选B.点睛:若,则三点共线,利用这个充要关系可确定点的位置.7、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B8、C【解析】根据奇函数的性质及命题充分必要性的概念直接判断.【详解】为奇函数,则,但,无法得函数为奇函数,例如,满足,但是为偶函数,所以是的充分不必要条件,故选:C.9、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.10、C【解析】先根据偶函数求出a、b的值,得到解析式,代入直接求解.【详解】因为偶函数的定义域关于原点对称,则,解得.又偶函数不含奇次项,所以,即,所以,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则12、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.13、【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14、【解析】函数g(x)=lnx的反函数为,若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点,即在x∈R上有解,,∵x∈R,∴∴即.三、15、##【解析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.16、【解析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)答案见详解.【解析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【点睛】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2)函数零点问题一般可以转换为方程的根,或者两函数图像交点的问题,在答题时,需要根据实际情况进行转换,本题利用了转化及数形结合的思想,属于中档题.18、(1);;(2)【解析】(1)根据向量数量积的坐标运算及辅助角公式,可得,然后由周期公式去求周期,再结合正弦函数的单调性去求函数的单调递增区间;(2)由(1)知,由求出,再结合正弦函数的单调性去求函数的值域【详解】(1)依题意得===的最小正周期是:由解得,从而可得函数的单调递增区间是:(2)由,可得,所以,从而可得函数的值域是:19、(1)见解析;(2)见解析.【解析】(1)连接交于点,连接,可得为中位线,,结合线面平行的判定定理,得平面;(2)由底面,得,正三角形中,中线,结合线面垂直的判定定理,得平面,最后由面面垂直的判定定理,证出平面平面.【详解】(1)连接交于点,连接,则点为的中点为中点,得为中位线,,平面平面,∴直线平面;(2)证明:底面,,∵底面正三角形,是中点,平面,平面,∴平面平面【点睛】本题考查了直三棱柱的性质,线面平行的判定定理、面面垂直的判定定理,,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20、(1)(2),(3)【解析】(1)利用降幂公式等化简可得,结合周期公式可得结果;(2)由,,解不等式可得增区间;(3)由的范围,得出的范围,根据正弦函数的性质即可得结果.【小问1详解】∴函数的最小正周期.【小问2详解】由,得,∴所求函数的单调递增区间为,.【小问3详解】∵,∴∴,,∴的值域为.21、(1);(2).【解析】(1)将方程整理为关于的二次函数,令,利用二次函数的图象与性质求函数的值域;(2)利用换元法及二次函数的性质求出函数在上的值域A,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学化学(分析化学研究)试题及答案
- 2025年中职建筑工程类(建筑安全规范)试题及答案
- 2026年新型储能(固态电池等)项目营销方案
- 2025年中职(美容美体艺术)美甲实务试题及答案
- 2025年大学电气工程及其自动化(自动控制原理)试题及答案
- 2026年装修设计(室内空间布局)试题及答案
- 2025年中职新能源汽车制造与检测(电池故障排查)试题及答案
- 2025年大学大四(港口航道与海岸工程)港口工程施工综合评估试题及答案
- 2025年中职第一学年(汽车运用与维修)汽车底盘检修试题及答案
- 2025年高职园艺技术(设施园艺栽培)试题及答案
- 钬激光在皮肤科手术中的临床应用
- 2024年4月自考00612日本文学选读试题
- 《海上风电场工程岩土试验规程》(NB/T 10107-2018)
- 设备安装施工方案范本
- 地产公司设计部工作总结
- 卫生院副院长先进事迹材料
- 《期权基础知识》课件
- 复发性抑郁症个案查房课件
- 人类学概论(第四版)课件 第1、2章 人类学要义第一节何为人类学、人类学的理论发展过程
- 《功能性食品学》第七章-辅助改善记忆的功能性食品
- 2023秋季学期国开思政课《思想道德与法治》在线形考(专题检测1-7)试题及答案
评论
0/150
提交评论