版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古阿荣旗第一中学2026届高一数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知非空集合,则满足条件的集合的个数是()A.1 B.2C.3 D.42.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A B.C. D.4.下列函数中,在上单调递增的是()A. B.C. D.5.下列函数既是奇函数又是周期为π的函数是()A. B.C. D.6.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.7.使不等式成立的充分不必要条件是()A. B.C. D.8.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}9.在下列四组函数中,与表示同一函数的是()A.,B.,C.,D.,10.函数的图像大致为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____12.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.13.已知幂函数的图象过点,则______.14.下面有六个命题:①函数是偶函数;②若向量的夹角为,则;③若向量的起点为,终点为,则与轴正方向的夹角的余弦值是;④终边在轴上的角的集合是;⑤把函数的图像向右平移得到的图像;⑥函数在上是减函数.其中,真命题的编号是__________.(写出所有真命题的编号)15.函数的定义域为__________.16.如图,全集,A是小于10的所有偶数组成的集合,,则图中阴影部分表示的集合为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有两直线和,当a在区间内变化时,求直线与两坐标轴围成四边形面积的最小值18.已知角的顶点为坐标原点,始边为轴的非负半轴,终边经过点,且.(1)求实数的值;(2)若,求的值.19.(附加题,本小题满分10分,该题计入总分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质(1)若,判断是否具有性质,说明理由;(2)若函数具有性质,试求实数的取值范围20.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.21.已知集合,(1)当时,求;(2)若,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意可知,集合为集合的子集,求出集合,利用集合的子集个数公式可求得结果.【详解】,所以满足条件的集合可以为,共3个,故选:C.【点睛】本题考查集合子集个数的计算,考查计算能力,属于基础题.2、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.3、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C4、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.5、D【解析】先判断函数的奇偶性,再求函数的周期,然后确定选项【详解】是最小正周期为的奇函数,故A错误;的最小正周期是π是偶函数,故B错误;是最小正周期是π是偶函数,故C错误;最小正周期为π的奇函数,故D正确﹒故选:D6、C【解析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.7、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A8、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C9、B【解析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【详解】对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,但是解析式不一样,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选:B.10、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A二、填空题:本大题共6小题,每小题5分,共30分。11、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.12、##【解析】直接根据三角函数定义求解即可.【详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:13、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.14、①⑤【解析】对于①函数,则=,所以函数是偶函数;故①对;对于②若向量的夹角为,根据数量积定义可得,此时的向量应该为非零向量;故②错;对于③=,所以与轴正方向的夹角的余弦值是-;故③错;对于④终边在轴上的角的集合是;故④错;对于⑤把函数的图像向右平移得到,故⑤对;对于⑥函数=在上是增函数.故⑥错;故答案为①⑤.15、【解析】解不等式即可得出函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.16、【解析】根据维恩图可知,求,根据补集、交集运算即可.【详解】,A是小于10的所有偶数组成的集合,,,由维恩图可知,阴影部分为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、.【解析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,)两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即yE=2∴S四边形OCEA=S△BCE﹣S△OAB|BC|•yE|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号∴l1,l2与坐标轴围成的四边形面积的最小值为【点睛】本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题18、(1)或(2)【解析】(1)利用三角函数定义可求的值.(2)利用诱导公式可求三角函数式的值.【小问1详解】由题意可得,所以,整理得,解得或.【小问2详解】因为,所以由(1)可得,所以,所以.19、(Ⅰ)具有性质;(Ⅱ)或或【解析】(Ⅰ)具有性质.若存在,使得,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根.设,即在上有且只有一个零点.讨论的取值范围,结合零点存在定理,即可得到的范围试题解析:(Ⅰ)具有性质依题意,若存在,使,则时有,即,,.由于,所以.又因为区间内有且仅有一个,使成立,所以具有性质5分(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根设,即在上有且只有一个零点解法一:(1)当时,即时,可得在上为增函数,只需解得交集得(2)当时,即时,若使函数在上有且只有一个零点,需考虑以下3种情况:(ⅰ)时,在上有且只有一个零点,符合题意(ⅱ)当即时,需解得交集得(ⅲ)当时,即时,需解得交集得(3)当时,即时,可得在上为减函数只需解得交集得综上所述,若函数具有性质,实数的取值范围是或或14分解法二:依题意,(1)由得,,解得或同时需要考虑以下三种情况:(2)由解得(3)由解得不等式组无解(4)由解得解得综上所述,若函数具有性质,实数的取值范围是或或14分考点:1.零点存在定理;2.分类讨论的思想20、(1)(2)【解析】(1)利用偶函数定义求出实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职美容美体艺术(化妆造型设计)试题及答案
- 2025年大学大一(地理科学)自然地理学基础理论测试题及答案
- 2025年高职(服装设计与工艺)服装结构设计阶段测试试题及答案
- 2025年大学第二学年(酒店管理)酒店品牌建设试题及答案
- 2026年泳池安全防护网项目公司成立分析报告
- 2025年高职椰韵纹眉(眉形设计与上色技巧)试题及答案
- 2025年大学大四(生物医学工程产业)医疗器械产业发展分析综合测试题及答案
- 2025年中职(皮革制品设计与制作)皮鞋制作工艺阶段测试题及答案
- 2025年大学海洋渔业科学与技术(渔业技术)试题及答案
- 2025年中职(珠宝玉石加工与营销)玉石雕刻工艺阶段测试题及答案
- 2024版装修公司软装合同范本
- IABP主动脉球囊反搏课件
- 加压站清水池建设工程勘察设计招标文件
- 工会制度汇编
- 丧假国家规定
- 2023年医务科工作计划-1
- 乒乓球社团活动记录
- 地基与基础分项工程质量验收记录
- 一文多用作文课公开课课件
- 水运工程施工课程设计指导书
- 惊恐障碍诊治课件
评论
0/150
提交评论