黑龙江省大庆市2026届数学高一上期末质量跟踪监视模拟试题含解析_第1页
黑龙江省大庆市2026届数学高一上期末质量跟踪监视模拟试题含解析_第2页
黑龙江省大庆市2026届数学高一上期末质量跟踪监视模拟试题含解析_第3页
黑龙江省大庆市2026届数学高一上期末质量跟踪监视模拟试题含解析_第4页
黑龙江省大庆市2026届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省大庆市2026届数学高一上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,且,则的值可能为()A. B.C.0 D.12.已知函数是定义在上的奇函数,,且,则()A. B.C. D.3.已知函数,若正数,,满足,则()A.B.C.D.4.设函数的部分图象如图,则A.B.C.D.5.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈6.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=117.化简:A.1 B.C. D.28.“角为第二象限角”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件9.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.10.计算2sin2105°-1的结果等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.12.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).13.若函数在区间上是单调递增函数,则实数的取值范围是_______.14.直线关于定点对称的直线方程是_________15.已知,,,则,,的大小关系是______.(用“”连接)16.函数y=的定义域是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.18.已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.求:(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;19.已知平面上点,且.(1)求;(2)若点,用基底表示.20.已知函数,记.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,则说明理由.21.已知函数.(1)若函数在区间内存在零点,求实数m的取值范围;(2)若关于x的方程有实数根,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】化简集合得范围,结合判断四个选项即可【详解】集合,四个选项中,只有,故选:C【点睛】本题考查元素与集合的关系,属于基础题2、C【解析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C3、B【解析】首先判断函数在上单调递增;然后根据,同时结合函数的单调性及放缩法即可证明选项B;通过举例说明可判断选项A,C,D.【详解】因为,所以函数在上单调递增;因为,,,均为正数,所以,又,所以,所以,所以,又因为,所以,选项B正确;当时,满足,但不满足,故选项A错误;当时,满足,但此时,不满足,故选项C错误;当时,满足,但此时,不满足,故选项D错误.故选:B.4、A【解析】根据函数的图象,求出A,和的值,得到函数的解析式,即可得到结论【详解】由图象知,,则,所以,即,由五点对应法,得,即,即,故选A【点睛】本题主要考查了由三角函数的图象求解函数的解析式,其中解答中根据条件求出A,和的值是解决本题的关键,着重考查了运算与求解能力,属于基础题.5、B【解析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积【详解】由题,刍童的体积为立方丈【点睛】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键6、C【解析】因为,所以,则,故选C7、C【解析】根据二倍角公式以及两角差的余弦公式进行化简即可.【详解】原式.故选C.【点睛】这个题目考查了二倍角公式的应用,涉及两角差的余弦公式以及特殊角的三角函数值的应用属于基础题.8、B【解析】利用充分条件和必要条件的定义判断.【详解】当角为第二象限角时,,所以,故充分;当时,或,所以在第二象限或在第三象限,故不必要;故选:B9、B【解析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B10、D【解析】.选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).12、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.13、【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:14、【解析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:15、【解析】结合指数函数、对数函数的知识确定正确答案.【详解】,,所以故答案为:16、【解析】要使函数有意义,需满足,函数定义域为考点:函数定义域三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用商数关系及题设变形整理即得的值;(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.试题解析:(1)∵∴2分解之得4分(2)∵是第三象限的角∴=6分===10分由第(1)问可知:原式==12分考点:三角函数同角关系式.18、(Ⅰ);(Ⅱ).【解析】(1)求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解,利用待定系数法的关键是建立关于a,b,r或D,E,F的方程组.本题利用几何性质;(2)利用圆心到直线的距离可判断直线与圆的位置关系;也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系试题解析:(1)设圆心为,因圆C与直线相切,故,又,所以所求圆的方程为(2)因直线与圆M相交于两点,所以圆心到直线的距离小于半径故,解得考点:圆的方程及直线与圆的位置关系19、(1);(2)【解析】(1)设,根据向量相等的坐标表示可得答案;(2)设,建立方程,解之可得答案【详解】解:(1)设,由点,所以,又,所以,解得所以点,所以;(2)若点,所以,,设,即,解得所以用基底表示20、(1);(2)奇函数,理由见解析;(3)不存在,理由见解析.【解析】(1)分别求f(x)和g(x)定义域,F(x)为这两个定义域的交集;(2)先判断定义域是否关于原点对称,再判断F(-x)与F(x)的关系;(3)先根据定义域和值域求出m,n,a的范围,再利用单调性将问题转化为方程有解问题.【小问1详解】由题意知要使有意义,则有,得所以函数的定义域为:【小问2详解】由(1)知函数F(x)的定义域为:,关于原点对称,函数为上的奇函数.【小问3详解】,假设存在这样的实数,则由可知令,则在上递减,在上递减,是方程,即有两个在上的实数解问题转化为:关于的方程在上有两个不同的实数解令,则有,解得,又,∴故这样的实数不存在.21、(1);(2).【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论