版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省永年县第一中学2026届数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.3.已知F是抛物线的焦点,直线l是抛物线的准线,则F到直线l的距离为()A.2 B.4C.6 D.84.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.5.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则6.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.7.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.8.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.9.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条10.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.11.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.12.等差数列中,为其前项和,,则的值为()A.13 B.16C.104 D.208二、填空题:本题共4小题,每小题5分,共20分。13.若数列满足,,则__________14.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________15.已知双曲线的左,右焦点分别为,,过右焦点且倾斜角为直线l与该双曲线交于M,N两点(点M位于第一象限),的内切圆半径为,的内切圆半径为,则为___________.16.双曲线的焦距为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前n项和为,若公差,且,,成等比数列.(1)求的通项公式;(2)求数列的前n项和.18.(12分)在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.19.(12分)已知抛物线的焦点为F,其中P为E的准线上一点,O是坐标原点,且(1)求抛物线E的方程;(2)过的直线与E交于C,D两点,在x轴上是否存在定点,使得x轴平分?若存在,求出点M的坐标;若不存在,请说明理由20.(12分)某公司举办捐步公益活动,参与者通过捐赠每天运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,还为公司获得了相应的广告效益,据测算,首日参与活动人数为5000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为20万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元)(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?21.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长22.(10分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据方程表示椭圆,且2,再判断必要不充分条件即可.【详解】解:方程表示椭圆满足,解得,且2所以“”是“方程表示椭圆”的必要不充分条件.故选:B2、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.3、B【解析】根据抛物线定义即可求解【详解】由得,所以F到直线l的距离为故选:B4、A【解析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A5、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.6、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.7、C【解析】根据导数的定义即可求解.【详解】.故选:C.8、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.9、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.10、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.11、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D12、D【解析】利用等差数列下标的性质,结合等差数列前项和公式进行求解即可.【详解】由,所以,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】根据递推公式,依次求得值.【详解】依题意,由,可知,故答案为:714、①.4②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.15、##【解析】设,,,利用双曲线的定义可得,作出图形,结合图形分析,可知与直线的倾斜角相等,利用直角三角形中的边角关系,即求.【详解】设的内切圆为圆,与三边的切点分别为,如图所示,设,,,设的内切圆为圆,由双曲线的定义可得,得,由此可知,在中,轴于点,同理可得轴于点,所以轴,过圆心作的垂线,垂足为,因为,所以,∴,即∴,即故答案为:.【点睛】关键点点睛,得到是关键,说明轴,同时直线的倾斜角与大小相等,计算即得.16、【解析】根据双曲线的方程求出,再求焦距的值.【详解】因为双曲线方程为,所以,.双曲线的焦距为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由等差数列的通项公式、前n项和公式结合等比数列的性质列方程可得数列首项与公差,即可得解;(2)由,结合裂项相消法即可得解.【详解】(1)因为数列为等差数列,,,,成等比数列,所以,所以,即,又因为,所以,所以;(2)因为,所以.【点睛】本题考查了等差数列与等比数列的综合应用及裂项相消法的应用,考查了运算求解能力,属于中档题.18、(1)证明见解析(2)【解析】(1)取的中点,利用三角形中位线定理可证明BG//EF,由线线平行,可得线面平行;(2根据图像可得,以为底面,证明为高,利用三棱锥的体积公式,可得答案;【小问1详解】取的中点,因为为的中点,所以且,又因为为的中点,四边形为菱形,所以且,所以且,故四边形BFEG为平行四边形,所以BG//EF,因为面面,所以面.【小问2详解】因为底面是边长为2的菱形,,则为正三角形,所以因为面,所以为三棱锥的高所以三棱锥的体积.19、(1)(2)存在;【解析】(1)设,利用向量坐标运算求出p即可;(2)设直线MC,MD的斜率分别为,,利用坐标计算恒成立,即可求解.【小问1详解】抛物线的焦点为,设,则,因为,所以,得所以抛物线E的方程为【小问2详解】假设在x轴上存在定点,使得x轴平分设直线的方程为,设点,,联立,可得∵恒成立,∴,设直线MC,MD的斜率分别为,,则由定点,使得x轴平分,则,所以把根与系数的关系代入可得,得故存在满足题意.综上所述,在x轴上存在定点,使得x轴平分20、(1)8745,1686元(2)37天【解析】(1)根据等比数列的性质求出结果;(2)对活动天数进行讨论,列出不等式求出的范围即可.【小问1详解】设第天的捐步人数为,则且,∴第5天的捐步人数为由题意可知前5天的捐步人数成等比数列,其中首项为5000,公比为1.15,∴前5天的捐步总收益为元.【小问2详解】设活动第天后公司捐步总收益可以回收并有盈余,若,则,解得(舍)若,则,解得∴活动开始后第37天公司的捐步总收益可以收回启动资金并有盈余.21、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年陕西建工集团股份有限公司工程六部招聘备考题库及完整答案详解1套
- 2026年龙里县万顺能源发展有限公司招聘备考题库有答案详解
- 2026年湖北芯辰创翼科技有限责任公司劳务外包岗位招聘备考题库及答案详解1套
- 快乐的节日-美术教案
- 2026年黄陂区教育局聘用制教师公开招聘27人笔试参考题库及答案解析
- 2026华能(福建漳州)热电有限责任公司校园招聘笔试备考题库及答案解析
- 2026广东湛江市坡头区残疾人联合会招聘精神障碍社区康复服务试点协管员1人笔试备考试题及答案解析
- 2026云南临沧市临翔区人力资源和社会保障局城镇公益性岗位人员招聘2人笔试模拟试题及答案解析
- 南昌大学附属口腔医院2026年高层次人才招聘备考题库及1套参考答案详解
- 2026年河南质量工程职业学院高职单招职业适应性测试备考试题有答案解析
- 2025年企业党支部书记年度述职报告
- 国家开放大学《刑事诉讼法学》形考任务2答案
- Python爬虫介绍课件
- 乡镇避孕药具培训资料
- 履带吊课件教学课件
- 煤矿返岗培训课件
- 医院法律法规专项培训实施计划方案
- 反渗透膜性能检测与维护流程
- 数字藏品授权协议书
- 头晕中西医课件
- 光伏电站故障处理培训大纲
评论
0/150
提交评论