版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时分类加法计数原理与分步乘法计数原理的综合应用目标定位1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.2.能根据实际问题特征,正确选择原理解决实际问题.自主预习1.两计数原理的联系分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.2.两计数原理的区别分类加法计数原理针对的是分类问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分类要做到不重不漏;分步乘法计数原理针对的是分步问题,各个步骤中的方法相互依存,只有各个步骤都完成才算做完这件事,分步要做到步骤完整.即时自测1.思考题(1)利用分类加法计数原理计数时的解题流程是什么?提示(2)利用分步乘法计数原理计数时的解题流程是什么?提示2.高艳有4件不同颜色的衬衣、3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”劳动节需选择一套服装参加歌舞演出,则高艳不同的穿衣服的方式有()A.24种 B.14种 C.10种 D.9种解析穿衣服方式分两类:一类是穿连衣裙,有2种方式;一类是穿衬衣和裙子,有12种方式.根据分类加法计数原理可知不同的穿衣方式共有2+12=14(种).答案B3.某体育场南侧有4个大门,北侧有3个大门,小李到体育场观看比赛,则他进、出门的方案有()A.12种 B.7种 C.14种 D.49种解析完成进、出体育场门这件事,需要分两步,第一步进体育场,第二步出体育场.第一步进门共有4+3=7种方法.第二步出门共有4+3=7种方法.由分步乘法计数原理知,进、出门的方案有7×7=49(种).答案D4.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一个数字不能相邻出现.这样的四位数有________个.解析组成满足条件的四位数分三步:第一步,确定个位数字,有3种方法;第二步,确定十位数字,有2种方法;第三步,确定百位与千位数字.分两类:一类是百位数字与个位数字相同,有1种方法;一类是百位数字与个位数字不同有2种方法,所以不同的四位数共有3×2×(1+2)=18(个).答案18类型一两个计数原理在排数中的应用【例1】用0,1,…,9这十个数字,可以组成多少个:(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?解由于0不可在最高位,因此应对它进行单独考虑.(1)百位数字有9种选择,十位数字和个位数字都各有10种选择.由分步乘法计数原理知,适合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择.由分步乘法计数原理知,适合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择.由分步乘法计数原理知,适合题意的三位数共有4×9×8=288(个).规律方法排数问题实际就是分步问题,需要用分步乘法计数原理解决.在解决相关的排数问题时,要注意两个原理的综合应用.【训练1】数字不重复的四位偶数共有多少个?解(1)0在末位时,十、百、千分别有9,8,7种排法,共有9×8×7=504(个).(2)0不在末位时,2,4,6,8中的一个在末位,有4种排法,首位有8种(0除外),其余两位分别有8,7两种排法.∴共有4×8×8×7=1792(个).由(1)(2)知,共有符合题意的偶数为504+1792=2296(个).类型二抽取(分配)问题(互动探究)【例2】高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种 B.18种 C.37种 D.48种[思路探究]探究点一分配方案是分类还是分步?分类标准是什么?提示先分类再分步,分类标准是甲工厂分配班的情况.探究点二如何使用间接法计算?提示去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数.解析法一(直接法)以甲工厂分配班级情况进行分类,共分为三类:第一类,三个班级都去甲工厂,此时分配方案只有1种情况;第二类,有两个班级去甲工厂,剩下的班级去另外三个工厂,其分配方案共有3×3=9(种);第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有3×3×3=27(种).综上所述,不同的分配方案有1+9+27=37(种).法二(间接法)先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:4×4×4-3×3×3=37(种)方案.答案C规律方法解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用例举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.【训练2】3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?解法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60(种).法二(以盒子为研究对象)盒子标上序号1,2,3,4,5;分成以下10类:第一类:空盒子标号为(1,2),选法有3×2×1=6(种);第二类:空盒子标号为(1,3),选法有3×2×1=6(种);第三类:空盒子标号为(1,4),选法有3×2×1=6(种).分类还有以下几种情况:(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5);共10类,每一类都有6种方法.根据分类加法计数原理得:共有方法数N=6+6+…+6=60(种).类型三涂色问题【例3】一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为a1,a2,a3,有多少种不同的种植方法?(2)如图2,圆环分成的4等份为a1,a2,a3,a4,有多少种不同的种植方法?解(1)如题图1,先对a1部分种植,有3种不同的种植方法,再对a2,a3种植.因为a2,a3与a1不同颜色,a2,a3也不同,所以由分步乘法计数原理得3×2×1=6(种).(2)如图2,当a1,a3不同色时,有3×2×1×1=6(种)种植方法,当a1,a3同色时,有3×2×2×1=12(种)种植方法,由分类加法计数原理,共有6+12=18(种)种植方法.规律方法(1)涂色问题的基本要求是相邻区域不同色,但是不相邻的区域可以同色.因此一般以不相邻区域同色、不同色为分类依据,相邻区域可用分步涂色的办法涂色.(2)涂色问题往往涉及两计数原理的综合应用,因此,要找准分类标准,兼顾条件的情况下分步涂色.【训练3】将红、黄、绿、黑4种不同的颜色分别涂入图中的5个区域内,要求相邻的两个区域的颜色都不相同,则有________种不同的涂色方法.解析给出区域标记号A,B,C,D,E(如图所示),则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色依赖于B区域与D区域涂的颜色,如果B区域与D区域涂的颜色相同,则有2种涂色方法;如果B区域与D区域所涂的颜色不相同,则只有1种涂色方法.因此应先分类后分步.(1)当B与D同色时,有4×3×2×2=48(种).(2)当B与D不同色时,有4×3×2×1×1=24(种).故共有48+24=72(种)不同的涂色方法.答案72类型四种植问题【例4】从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.解法一(直接法):若黄瓜种在第一块土地上,则有3×2=6(种)不同种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2=6(种)不同种植方法.故不同的种植方法共有6×3=18(种).法二(间接法):从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故共有不同种植方法24-6=18(种).规律方法按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都完成了这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.【训练4】将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种(以数字作答).解析分别用a,b,c代表3种作物,先安排第一块田,有3种方法,不妨设放入a,再安排第二块田,有2种方法b或c,不妨设放入b,第三块也有2种方法a或c.(1)若第三块田放c:abc第四、五块田分别有2种方法,共有2×2=4(种)方法.(2)若第三块田放a:aba第四块有b或c2种方法:①若第四块放c:abac第五块有2种方法;②若第四块放b:abab第五块只能种作物c,共1种方法.综上,共有3×2×(2×2+2+1)=42(种)方法.答案42[课堂小结]1.分类加法计数原理与分步乘法计数原理是两个最基本,也是最重要的原理.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏.4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法有()A.48种 B.24种 C.14种 D.12种解析从8名男生中任意挑选一名参加座谈会,共有8种不同的选法,从6名女生中任意挑选一名参加座谈会,共有6种不同的选法.由分步乘法计数原理知,不同的选法共有8×6=48(种).答案A2.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9解析从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6×3=18种,故选B.答案B3.(a1+a2)·(b1+b2+b3)·(c1+c2+c3+c4)的展开式中有________项.解析要得到项数分三步:第一步,从第一个因式中取一个因子,有2种取法;第二步,从第二个因式中取一个因子,有3种取法;第三步,从第三个因式中取一个因子,有4种取法.由分步乘法计数原理知,共有2×3×4=24(项).答案244.由0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?解(1)0不能做百位数字,所以百位数字有3种选择,十位数字有3种选择,个位数字有2种选择,所以无重复数字的三位数共有3×3×2=18(个).(2)百位数字有3种选择,十位数字有4种选择,个位数字也有4种选择.由分步乘法计数原理知,可以有重复数字的三位数共有3×4×4=48(个).基础过关1.如图,小圆点表示网络的结点,结点之间的连线表示它们有网线相连,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可沿不同的路径同时传递,则单位时间传递的最大信息量是()A.26 B.24 C.20 D.19解析单位时间内传递的最大信息量是N=3+4+6+6=19,故选D.答案D2.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a,b)的坐标,能够确定不在x轴上的点的个数是()A.100 B.90 C.81 D.72解析分两步:第一步选b,∵b≠0,所以有9种选法;第二步选a,因a≠b,所以有9种选法.由分步乘法计数原理知共有9×9=81(个)点.答案C3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.10解析①当a=0时,很显然为垂直于x轴的直线方程,有解,此时b取4个值,故有4种有序数对;②当a≠0时,需要Δ=4-4ab≥0,即ab≤1,显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).∵(a,b)共有3×4=12个实数对,此时(a,b)的取值为12-3=9(个).∴(a,b)的个数为4+9=13.答案B4.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案有________种.解析完成承建任务可分五步:第一步,安排1号有4种;第二步,安排2号有4种;第三步,安排3号有3种;第四步,安排4号有2种;第五步,安排5号有1种.由分步乘法计数原理知,共有4×4×3×2×1=96(种).答案965.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有________种不同的取法.解析分三类,第一类:取数学书和语文书,有10×9=90(种);第二类:取数学书和英语书,有10×8=80(种);第三类:取语文书和英语书,有9×8=72(种),故共有90+80+72=242(种).答案2426.有一项活动,需在3名老师、8名男同学和5名女同学中选人参加.(1)若只需一人参加,有多少种不同方法?(2)若需老师、男同学、女同学各一人参加,有多少种不同选法?(3)若需一名老师、一名学生参加,有多少种不同选法?解(1)有三类选人的方法:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.由分类加法计数原理,共有3+8+5=16种选法.(2)分三步选人:第一步选老师,有3种方法;第二步选男同学,有8种方法;第三步选女同学,有5种方法.由分步乘法计数原理,共有3×8×5=120种选法.(3)可分两类,每一类分两步.第一类:选一名老师再选一名男同学,有3×8=24种选法;第二类:选一名老师再选一名女同学,共有3×5=15种选法.由分类加法计数原理,共有24+15=39种选法.7.若把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有多少对?解把六棱锥的棱分成三类:第一类,底面上的六条棱所在的直线共面,则每两条之间不能构成异面直线.第二类,六条侧棱所在的直线共点,每两条之间也不能构成异面直线.第三类,结合图形可知,底面上的六条棱所在的直线中的每一条与之不相交的四条侧棱所在的四条直线中的每一条才能构成异面直线.再由分步乘法计数原理,可构成异面直线6×4=24(对).8.从{-3,-2,-1,0,1,2,3}中,任取3个不同的数作为抛物线方程y=ax2+bx+c的系数,如果抛物线经过原点,且顶点在第一象限,则这样的抛物线共有多少条?解因为抛物线经过原点,所以c=0,从而知c只有1种取值.由c=0解得a<0,b>0,所以a∈{-3,-2,-1},b∈{1,2,3},这样要求的抛物线的条数可由a,b,c的取值来确定:第一步:确定a的值,有3种方法;第二步:确定b的值,有3种方法;第三步:确定c的值,有1种方法.由分步乘法计数原理知,表示的不同的抛物线有N=3×3×1=9(条).能力提升9.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种 B.30种 C.36种 D.48种解析共有4×3×2×2=48(种).答案D10.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有()A.18条 B.20条 C.25条 D.10条解析第一步取A的值,有5种取法,第二步取B的值有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).答案A11.将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中,1号盒中无球的不同方法种数为________;1号盒中有球的不同放法种数为_______.解析1号盒中无球即A,B,C三球只能放入2,3,4号盒子中,有33种放法;1号盒中有球可分三类:一类是1号盒中有一个球,共有3×32=27种放法,一类是1号盒中有两个球,共有3×3=9种放法,一类是1号盒中有三个球,有1种放法.共有27+9+1=37种放法.答案273712.春回大地,大肥羊学校的春季运动会正在如火如荼地进行,喜羊羊、懒羊羊、沸羊羊、暖羊羊4只小羊要争夺5项比赛的冠军,则有________种不同的的夺冠情况.解析不同的夺冠情况可分五步完成,第一步,确定第1项比赛的冠军有4种方法;同理确定后4项比赛的冠军也各有4种方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年活动执行(现场布置)试题及答案
- 2025年大学能源科学(科学研究实务)试题及答案
- 2026年电子技术(元件焊接)试题及答案
- 2026年耳鼻喉科(中耳炎手术护理)试题及答案
- 2025年中职历史(历史基础技能应用)试题及答案
- 2025年高职第三学年(市政工程技术)道路施工技能测试试题及答案
- 2025年高职工业机器人运维(运维管理)试题及答案
- 2025年大学药品生产技术(药物合成反应)试题及答案
- 2026年酒柜除湿模块项目可行性研究报告
- 2025年高职(现代农业技术)农业物联网应用试题及答案
- 养老院9防培训课件
- 充电站安全培训课件
- 浙江军转考试试题及答案
- 2025海康威视内容安全管控系统使用手册
- 《机器学习》课件-第7章 神经网络与深度学习
- 生物安全培训试题(含答案)
- 分局辅警服装购置项目方案投标文件(技术标)
- 滑行工具好玩也危险
- 2025-2030中国智能家居系统配置服务技术人才缺口评估报告
- 护士肺功能室进修汇报
- 员工工时管控方案(3篇)
评论
0/150
提交评论