版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市洞口一中、隆回一中、武冈二中2026届高一上数学期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象大致为()A. B.C. D.2.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.23.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.4.已知函数,则A.0 B.1C. D.25.函数,则的最大值为()A. B.C.1 D.6.已知函数,,则函数的值域为()A B.C. D.7.函数的零点所在的大致区间是A. B.C. D.8.函数(A,ω,φ为常数,A>0,ω>0,)的部分图象如图所示,则()A. B.C. D.9.设集合,则()A. B.C. D.10.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数是___________.12.已知的定义域为,那么a的取值范围为_________13.函数是幂函数且为偶函数,则m的值为_________14.已知角的终边经过点,则________.15.已知是定义在R上的周期为2的奇函数,当时,,则___________.16.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.18.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.19.某种树木栽种时高度为A米为常数,记栽种x年后的高度为,经研究发现,近似地满足,其中,a,b为常数,,已知,栽种三年后该树木的高度为栽种时高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍参考数据:,20.已知,且向量在向量的方向上的投影为,求:(1)与的夹角;(2).21.已知函数(其中为常数)的图象经过两点.(1)判断并证明函数的奇偶性;(2)证明函数在区间上单调递增.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由奇偶性定义判断对称性,再根据解析式判断、上的符号,即可确定大致图象.【详解】由题设,且定义域为R,即为奇函数,排除C,D;当时恒成立;,故当时,当时;所以,时,时,排除B;故选:A.2、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.3、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D4、B【解析】,选B.5、C【解析】,然后利用二次函数知识可得答案.【详解】,令,则,当时,,故选:C6、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B7、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题8、B【解析】根据函数图像易得,,求得,再将点代入即可求得得值.【详解】解:由图可知,,则,所以,所以,将代入得,所以,又,所以.故选:B.9、B【解析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.10、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】根据指数函数与对数函数互为反函数直接求解.【详解】因为,所以,即的反函数为,故答案为:12、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:13、【解析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案.【详解】由函数是幂函数,则,得或当时,函数不是偶函数,所以舍去.当时,函数是偶函数,满足条件.故答案为:【点睛】本题考查幂函数的概念和幂函数的奇偶性,属于基础题.14、【解析】根据终边上的点,结合即可求函数值.【详解】由题意知:角在第一象限,且终边过,∴.故答案为:.15、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.16、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求函数的定义域,就是求使得根式有意义的自变量的取值范围,然后求解分式不等式即可;(2)因为,所以一定有,从而得到,要保证,由它们的端点值的大小列式进行计算,即可求得结果.【详解】(1)要使函数有意义,则需,即,解得或,所以;(2)由题意可知,因为,所以,由,可求得集合,若,则有或,解得或,所以实数的取值范围是.【点睛】该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.18、(1)(2)【解析】(1)利用点斜式求得过点A且平行于BC的直线方程.(2)根据中点坐标、线段AB的垂直平分线的斜率求得正确答案.【小问1详解】直线的斜率为,所以过点A且平行于BC的直线方程为.【小问2详解】线段的中点为,直线的斜率为,所以线段AB的垂直平分线的斜率为,所以线段AB的垂直平分线为.19、(Ⅰ),;(Ⅱ)5年.【解析】Ⅰ由及联立解方程组可得;Ⅱ解不等式,利用对数知识可得【详解】Ⅰ,,
,又,即,,联立解得,,Ⅱ由Ⅰ得,由得,,故栽种5年后,该树木的高度将不低于栽种时的5倍【点睛】本题考查了函数解析式的求解及对数的运算,考查了函数的实际应用问题,属于中档题20、(1);(2)【解析】(1)由题知,进而得出,即可求得.(2)根据数量积的定义即可得出答案.【详解】解:(1)由题意,,所以.又因为,所以.(2).【点睛】本题考查了向量的夹角、向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年1月广东深圳大学附属华南医院选聘事业单位人员5人考试参考题库及答案解析
- 2026内蒙古乌兰察布市察右前旗残疾人联合会高校毕业生公益性岗位招聘6人考试备考题库及答案解析
- 2026国家卫生健康委卫生发展研究中心事业编制招聘3人考试备考试题及答案解析
- 2026年1月重庆市万州区高峰街道办事处公益性岗位招聘4人考试参考题库及答案解析
- 2026四川成都市温江区涌泉街道社区卫生服务中心编外医师招聘2人考试参考题库及答案解析
- 2026云南玉溪市华宁县卫生健康局事业单位招聘9人考试备考题库及答案解析
- 中国太平洋保险股份有限公司铜陵支公司招聘2人考试备考试题及答案解析
- 2026重庆九龙坡区行知育才学校招聘2人考试备考试题及答案解析
- 2026陕西咸阳市高新一中教师招聘考试备考题库及答案解析
- 2026年甘肃庆阳西峰区学院路实验学校人才储备23人笔试参考题库及答案解析
- 2026年初二物理寒假作业(1.31-3.1)
- 2025秋人教版七年级上册音乐期末测试卷(三套含答案)
- 2025福建德化闽投抽水蓄能有限公司招聘4人(公共基础知识)综合能力测试题附答案
- “十五五规划纲要”解读:和美乡村宜居宜业
- 广东省广州市2026届高三年级上学期12月调研测试数学(广州零模)(含答案)
- 2025-2030中国工业硅行业市场现状供需分析及投资评估规划分析研究报告
- 手机供货协议书
- 2025年北京高中合格考政治(第二次)试题和答案
- 民俗的特征教学课件
- 吸痰操作课件
- 山东省潍坊市2023-2024学年高一上学期期末考试地理试题(含答案)
评论
0/150
提交评论