2026年基于证据的矿业新技术影响研究报告(英文版)_第1页
2026年基于证据的矿业新技术影响研究报告(英文版)_第2页
2026年基于证据的矿业新技术影响研究报告(英文版)_第3页
2026年基于证据的矿业新技术影响研究报告(英文版)_第4页
2026年基于证据的矿业新技术影响研究报告(英文版)_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20

YEARS

Evidence-BasedResearchon

theImpactofNewTechnologiesintheMiningIndustry

Secretariathostedby

CUSD

Secretariatfundedby

canada·

kingdomoftheNetherlands

©2025InternationalInstituteforSustainableDevelopment

PublishedbytheInternationalInstituteforSustainableDevelopment

Thispublicationislicensedundera

CreativeCommonsAttribution-

NonCommercial-ShareAlike4.0InternationalLicense

.

TheInternationalInstituteforSustainableDevelopment(IISD)isan

award-winningindependentthinktankworkingtoacceleratesolutionsforastableclimate,sustainableresourcemanagement,andfaireconomies.

Ourworkinspiresbetterdecisionsandsparksmeaningfulactiontohelp

peopleandtheplanetthrive.Weshinealightonwhatcanbeachieved

whengovernments,businesses,non-profits,andcommunitiescome

together.IISD’sstaffofmorethan200expertscomefromacrosstheglobeandfrommanydisciplines.WithofficesinWinnipeg,Geneva,Ottawa,andToronto,ourworkaffectslivesinnearly100countries.

IISDisaregisteredcharitableorganizationinCanadaandhas501(c)(3)

statusintheUnitedStates.IISDreceivescoreoperatingsupportfromtheProvinceofManitobaandprojectfundingfromgovernmentsinsideand

outsideCanada,UnitedNationsagencies,foundations,theprivatesector,andindividuals.

TheIntergovernmentalForumonMining,Minerals,MetalsandSustainable

IISDHEADOFFICE

111LombardAvenueSuite325

Winnipeg,ManitobaCanadaR3B0T4

IISD.org

X-TWITTER@IISD_news

IGFM

Development(IGF)supportsitsmorethan80membercountriesin

advancingtheirsustainabledevelopmentgoalsthrougheffectivelaws,

policies,andregulationsfortheminingsector.Wehelpgovernmentstakeactiontodevelopinclusiveandgender-equitablepractices,optimize

financialbenefits,supportlivelihoods,andsafeguardtheenvironment.

Ourworkcoversthefullmininglifecycle,fromexplorationtomineclosure,andprojectsofallsizes,fromartisanalminingtolarge-scaleoperations.

Guidedbyourmembers’needs,weprovidein-countryassessments,

capacitybuilding,technicaltraining,publications,andeventstoadvance

bestpractices,peerlearning,andengagementwithindustryandcivil

society.TheInternationalInstituteforSustainableDevelopmenthashostedtheIGFSecretariatsinceOctober2015.Corefundingisprovidedbythe

governmentsofCanadaandtheNetherlands.

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

December2025

WrittenbytheIGFSecretariat.

Photo:iStock

ACKNOWLEDGEMENTS

LeadauthorsofthispublicationareSidiYounga,EgeTekinbas,GrégoireBellois,andIsabelleRamdoo.

X-TWITTERlinkedinfacebook@IGFMining

iii

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

ExecutiveSummary

Theglobalminingsectorisexperiencingaprofoundtransformationdrivenbytheincreasingdemandforcriticalmineralsessentialtotheenergyanddigitaltransitions,alongside

mountingpressuresfrominvestors,consumers,andcivilsocietyformoresustainable

andequitableminingpractices.Accompanyingandsupportingthistransformation,new

technologiesarebeingrapidlyintegratedintolarge-scaleminingoperations,significantly

impactinglabourmarkets,supplychains,andhostcommunities.Thisreportprovidesan

analysisoftechnologyadoptionandtheirassociatedimpacts,drawingoncasestudiesfromsixlarge-scaleminingoperationsinsixdifferentcountries:Australia,BurkinaFaso,Côte

d’Ivoire,theDemocraticRepublicoftheCongo(DRC),Guinea,andSouthAfrica.

KeyFindings

Thefindingsoutlinedherecomefrombothqualitativeinformationandquantitativedatagatheredfromminingcompanies:

•acceleratedtechnologicaladoption:Miningcompaniesareincreasinglyintegrating

advancedtechnologiessuchasartificialintelligence(AI),autonomousmachinery,anddataanalytics.Thistrendenhancesoperationalefficiencyandsafety,particularly

inundergroundmining,butvariesbyregionduetodifferencesinresourcesandinfrastructure.

•disparitiesbetweeneconomies:AdvancedminingeconomieslikeAustraliaandSouthAfricaareleadingintechnologyadoptionduetobetterfinancialandinfrastructural

resources.Incontrast,emergingminingeconomies,includingBurkinaFasoandthe

DRC,facechallengessuchashighcostsandlimitedconnectivity,whichslowthepaceofadoption.However,decliningtechnologycostsmayeventuallyimproveaccessibilityintheseregions.

•labourmarketshifts:Adoptionofnewtechnologiesisreshapingthelabourmarketbyreducingdemandforlow-skilledjobsandincreasingtheneedforspecializedskillsininformationtechnologies(IT),datamanagement,andengineering.Whileautomationreducesthedemandforcertainroles,italsocreatesnew,higher-paidopportunities.However,thesejobsrequirequalificationsthatareofteninsufficientlyavailable

locally,particularlyindevelopingcountries.

•variedimpactsonjob:Theeffectoftechnologicaladoptiononemploymentvaries

widelyacrosscountriesexaminedinthisreport.Somecompanieshavereduced

theirworkforces,whileothershaveredeployedorretrainedemployeestominimizejoblosses.Themostdisruptivetechnologiesarestillintheearlystagesofadoptioninmostcountriesexamined;therefore,thefullimpactonemploymentisyettobeassessed.

•genderedjobopportunities:Technologiesareopeningupjobopportunitiesforwomen,buttheiruptakeislimitedbytheunderrepresentationofwomeninscience,technology,engineering,andmathematicsfields.Targetedpoliciesandinitiativesareneededto

addressthisimbalanceandincreasewomen’sparticipationinthejobsneededforthedigitalizationofmining.

iv

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

•indirectandlocalbenefits:Technologyadoptionisgeneratingindirectjob

opportunitiesandnewbusinessventures,particularlyindigitalservices.However,inemergingeconomies,localbenefitsarelimitedduetotherelianceonimportedtechnologiesandlackoflocalmanufacturingcapacity.

•needforproactivemeasures:Bothminingcompaniesandgovernmentsaretakingstepstoaddressthechallengesposedbythedeploymentofnewtechnologies,butfurtheractionisneeded.Thisincludesimprovingworkforceskillsandcapabilities,fosteringlocaltechnologicalinnovation,andenhancingcommunityengagementtoensurebroad-basedbenefits.

PolicyRecommendations

Tonavigatetheongoingtransformationintheminingsectorandensurethatitsbenefitsarebroadlyshared,governmentsandcompaniesmustadoptforward-looking,data-drivenstrategies.Keyrecommendationsincludethefollowing:

•monitorlabourdynamics:implementsystemstotracktheimpactoftechnologiesonjobsandskills,andtheskillsrequirementsoftheminingsector,allowingfortimely

supportandadaptation;

•adapttrainingprograms:aligneducationalandvocationaltrainingwiththeemergingneedsoftheminingsector,focusingondigitalandtechnicalskills;

•investininfrastructure:enhanceconnectivityanddigitalinfrastructure,especiallyinemergingeconomies,tofacilitatewidertechnologyadoption;

•supportlocalcontent:encouragelocalproductionandserviceprovisionthroughcontentpoliciesandtechnologyhubs;

•engagecommunities:fostercommunityinvolvementintechnologyadoption,ensuringlocalbenefitsandaddressingpotentialsocialimpacts.

Thisreportunderscorestheneedforacollaborativeapproachbetweengovernments,industry,andcommunitiestomanagethecomplexdynamicsoftechnologicalchangeinthemining

sector.Byproactivelyaddressingthechallengesandseizingtheopportunitiespresentedby

newtechnologies,stakeholderscanensurethatthebenefitsofmining'sdigitaltransformationaresharedwidelyandequitably.

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

v

TableofContents

1.0Background,Purpose,andScopeoftheStudy 1

1.1Introduction 1

1.2BackgroundandPurposeoftheStudy 2

1.3CountriesandOperationsSelection 2

1.4ScopeandLimitationsoftheReport 3

2.0OverviewofTechnologicalLandscape 5

2.1TaxonomyofDisruptiveTechnologies 5

2.2AssessmentFramework 8

3.0ImpactofNewTechnologiesonJobs 12

4.0KeyFindings 14

5.0PolicyRecommendations 39

References 43

AppendixA.IndirectOccupationsEmergingFromtheDevelopmentofNew

Technologies 46

ListofFigures

Figure1.Taxonomyofdisruptivetechnologiesintheminingsector 6

Figure2.IllustrationofCAS 8

Figure3.Adoptionrateofnewtechnologiesbyminingcompaniesbasedonthesurvey 15

Figure4.Illustrationofnewtechnologiesembeddedinaminingautonomoustruck 17

Figure5.Adoptionbylevelofcountries1economicdevelopment 19

Figure6.Mapof5GnetworkasofMarch2024 20

Figure7.Simplifiedrepresentationoflabourmarketdynamics 22

Figure8.ShareofIThiringintheminingindustryinAustraliainMarch2022,

byjobclassification 25

ListofTables

Table1.Newtechnologiesassessedinthestudy 9

Table2.Impactscoreoftechnologiesinmininglabourmarket 22

Table3.Newjobscreatedduetonewtechnologies 24

Table4.Destroyedanddecliningjobsduetonewtechnologies 28

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

vi

Table5.Netimpactonjobsfromnewtechnologies,examplefromcasestudies 30

Table6.Impactofnewtechnologiesonexistingtechnologies 33

Table7.Distributionofnewtechnologiessourcingandmanufacturingperorigin 35

Table8.Summaryofsomeactionsconductedbygovernmentsandminingcompaniesto

improveskillsdevelopment 37

Table9.Policyrecommendations 39

TableA1.Indirectoccupationemergingfromthedevelopmentofnewtechnologies 46

ListofBoxes

Box1.Machineinterfacecontrol:Improvingcollisionavoidanceatminesite 7

Box2.Highlight 17

Box3.Highlight 20

Box4.Highlight 21

Box5.Highlight 26

Box6.Breakingdownroles:Tasksvs.occupations 27

Box7.DescriptionofaremotelyoperatedmineinAustralia 31

Box8.Highlight 32

Box9.Highlight 37

1.0Background,Purpose,andScopeoftheStudy

1.1Introduction

Inrecentyears,theminingindustryhasundergonesignificantchangeswiththeadoptionofnewtechnologies.Buildingonthefindingsofthe2018IntergovernmentalForumonMining,Minerals,MetalsandSustainableDevelopment(IGF)researchprojectNewTechNewDeal

(Ramdoo,2019),whichexploredthepotentialimpactsofemergingtechnologiesonthe

sector,thisreporttakesastepfurtherbyempiricallyanalyzingtherealimpactsofthesetechnologies,notablyonlabourmarkets,supplychains,andhostcommunitiesacrosstheminingvaluechain.

Focusingoncasestudiesfromsixcountries—Australia,BurkinaFaso,Côted’Ivoire,the

DemocraticRepublicoftheCongo(DRC),Guinea,andSouthAfrica—thisreporthighlights

howtheintegrationofadvancedtechnologieslikeAIandautonomousmachineryisreshapingtheindustry.Whiletheseadvancementsareimprovingefficiencyandsafety,particularly

inadvancedeconomies,theyarealsocreatingdisparitiesbetweenregionswithdifferingresourcesandinfrastructures.

Labourmarketdynamicsareshifting,withareduceddemandforlow-skilledjobsanda

growingneedforspecializedskills.Althoughnewopportunitiesareemerging,particularlyinhigher-paidroles,theseareofteninaccessibletolocalcommunitiesindevelopingcountries.

Theimpactoncurrentemploymentalsovaries,withsomecompaniesretrainingemployees,whileothersfacejobreductions.

Thereportalsoexaminestheextenttowhichtechnologyadoptioninemergingeconomies

bringslocalbenefits,whererelianceonimportedtechnologiesmighthamperbroader

economicgrowth.Toaddressthesechallenges,thereportofferspolicyrecommendations

aimedatensuringthatthebenefitsoftechnologicalchangearesharedmoreequitablyacrossthesector.

1

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

2

1.2BackgroundandPurposeoftheStudy

Thelarge-scalemining(LSM)sectorisundergoingsignificantstructuralchangesdriven

bytheincreasingdemandforcriticalmineralsarisingfromtheenergyanddigital

transitions,alongsidegrowingpressurefrominvestors,consumers,andcivilsocietyfor

moreresponsibleandequitableminingpractices(IGF,2021,2023).Inresponsetothese

challenges,technologicaladvancementsoffervaluabletoolsforminingcompaniestoimprovetheefficiencyofthesectorbothintermsofproductivityandsustainability,thoughthey

alsointroduceanewsetofchallengestonavigate,forcountries,communities,andminingcompaniesthemselves.

NewtechnologiesarerapidlytransformingtheLSMsector,withsignificantimplications

forlabourmarkets,supplychains,andhostcommunities.In2021,withthesupportofthe

DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ),theIGFcompleteda

2-yearresearchprojectcalledNewTechNewDeal.Thisresearchmappedthekeydisruptivetechnologiesthatwereexpectedtobeadoptedbytheminingsectorandassessedtheir

potentialimpacts,particularlyinmining-dependentcountries(Ramdoo,2019).Theresearchwasbasedonexpectationsandprospectivescenariosthatpolicy-makerscouldconsider,giventhelikelysocio-economicimplicationsofdisruptivetechnologies.

Sincethisreportcameout,thescaleoftechnologicaladoptionhasbroadened,andthe

paceofdeploymentacrossoperationshasaccelerated.Thisnewreportprovidesexamples

oftheactualimpactsofsometechnologiesonselectedminingcountries.Itcomparesactualimplicationsagainsttheassumptionsandexpectationsthatweremadeinthepreviousreport.

Theresultsofthisreportdrawlessonsforgovernments,industries,andcommunitiestobettermanagerisksandopportunitiesrelatedtotheongoingtransformationintheLSMindustry.

1.3CountriesandOperationsSelection

ThisreportisbasedondatacollectedfromasampleofsixLSMoperationsinsixcountries:BurkinaFaso,Côted’Ivoire,Guinea,Australia,DRC,andSouthAfrica.Inlinewiththepreviousresearch,thecasestudieshavebeenselectedfromasetofcriteriathatconsiderdifferent

levelsofcountries’developmentaswellasthematurityoftheminingindustryinthose

countries,differenttypesofcommoditiesmined,anddifferentmethodsofproduction(suchasundergroundoropen-pitoperations).Countrieswerechosenfromvariousgeographicallocations.Oneofthekeyselectioncriteriaforcompanieswasthewillingnessofmining

companiestosharedata,suchastheimpactoftechnologiesonjobs.

Asthisreportintendstoassessthepaceofadoptionofnewtechnologiesconsidering

countries’economicdevelopment,countrieshavebeendividedintotwomaincategories:

•Advancedminingeconomiesrefertomiddle-andhigh-incomecountriesthathaveanestablishedminingsectorwithasignificantpresenceoflargeminingcompanies.Ofthesixcountriesselected,twocountries—AustraliaandSouthAfrica—fallinto

thiscategory.

•Emergingminingeconomiesrefertoleastdevelopedandlower-middle-income

countriesthatarenonethelessimportantandgrowingminingjurisdictionsthathavereceivedasignificantvolumeofinvestmentintheirminingsectorsinthelastfew

years.Ofthesixcountriesselectedforthisproject,fourcountries—BurkinaFaso,Côted’Ivoire,Guinea,andtheDRC—fallinthiscategory.

3

Ascopingdeskstudyhasbeenconductedtoidentifytheindividualoperationsthatwouldbeassessed.Criteriaforsuchidentificationincludethefollowing:

•globalcriteria:

⁰differentcommodities:Theminingofdifferentcommoditiesrequiresdifferentequipment,processes,andsystems.Thiswillhelptoreviewtheimpactof

differentexistingtechnologies.

⁰variouscountries,jurisdictions,languages,andcultures:Jurisdictionaldistinctions(technologicalregulation,taxation,securitycontext,accesstoenergy,network,developmentstage,etc.)haveastrongimpacton

operations.Thiswillhelptoshowtheimpactofnewtechnologiesamongdifferentjurisdictions.

⁰variousminingexploitationmethods(openpitandunderground):Different

miningexploitationmethodsusedifferentminingequipmentandsystems.Thiswillhelpreviewexistingtechnologiesamongdifferentminingexploitationandtheirimpact.

⁰operationsownedbydifferentminingcompanies:Miningcompanieshave

differentvisions,strategicgoals,andoperatingphilosophies.Thiswillhelpinreviewingexistingtechnologiesamongdifferentminingcompanies.

•keyspecificcriteria:

⁰largeworkforce:Thiswillallowafocusonoperationsthathaveahighersocialriskduetothelargenumberofstafftheyemployinthecountry.

⁰engagementinadigitaltransformation:Thiswillhelptofocusonoperations

andkeystakeholderswithanacceptabledigitalmaturityinordertogetrelevantinformationrelatedtotheimpactoftechnologies.

⁰abilitytoaccessrelevantandaccuratedata:Consideringthesocial

responsibilityandcommitmentsofminingcompanies,accesstoinformation

thatcouldbeconsideredsensitive,likeconsiderationsofpotentialjoblossesorreductionoflocalsourcing,iskeytosuccessfullyachievingthisstudy.

⁰operationinamining-dependentcountry(foremergingcountries):Technologymayhavemoreimpactonmining-dependentcountriesduetothemining

sector’sstrongcontributiontonationalbudget,employment,andsocio-economicdevelopments.

1.4ScopeandLimitationsoftheReport

ThisreportfocusesexclusivelyontheimpactsofthedevelopmentofnewtechnologiesintheLSMsectoranddoesnotaddresstheartisanalandsmall-scaleminingsector,whichisthe

subjectofaseparatestudy(IGF,2024a).

ThereportrepresentscasestudiesfromsixLSMoperationsinsixdifferentcountries,

managedbysixdifferentminingcompanies.Itintendstogatherinsightsfromsome

operationsinspecificcircumstancesandisnotaquantitativestudybasedonstatistical

samples.Indeed,althoughthecountrieswereselectedtoensureglobalrepresentation,the

samplesizeisinsufficienttodrawbroadconclusionsabouttheimpactofnewtechnologiesontheminingworkforceglobally.

4

Additionally,limiteddataavailabilityinsomeregionspreventsthegeneralizationoffindingsacrosscountrieswithsimilarlevelsofdevelopment.Consequently,thedataanalysis

presentedshouldnotbeinterpretedasabasisforgeneralizationsapplicabletoallmineral-producingcountries.

Instead,thereportidentifieskeytrendsand,whereappropriate,highlightsspecificexamplestounderscoreimportantnuancesandvariationsintheminingsector.

Thisreportshouldalsobereadfromtheperspectivethatoneofthemainchallenges

encounteredduringtheresearchwasthereluctanceofsomeminingcompaniestoshare

datarelatedtoactualorexpectedjoblosses/workforcereductions.Suchdisclosureisindeedconsideredhighlysensitiveandapotentialsourceofmajorsocialtensionsamongthe

workforceandinthevicinityofminingoperations.

2.0OverviewofTechnologicalLandscape

Thetechnologiesreferredtointhisreportareasetofdifferenttypesoftechnologiesthatarebeingadoptedacrossvarioussectors,andnotallofthemarespecifictotheminingindustry.However,whencombinedwithminingequipment,theyimprovetheefficiency,safety,and

overallimpactofminingoperations(IGF,2021).

2.1TaxonomyofDisruptiveTechnologies

InitsTechnologyImpactsReview,theIGF(Ramdoo,2019)mappedkeyemergingtechnologytrendsthatarebeingdevelopedandadoptedinLSMoperations.SuchtechnologiescanbeclassifiedintofourbroadcategoriesasillustratedinFigure1:

•first,usersofbigdata,suchassmartoriginalequipmentmanufacturers(OEMs)

machinesanddevicesembeddedwithtechnologiesthatusebigdatameanttoboosttheefficiencyofmineoperations,suchasautomatedmachineries,digitaltwins,supercomputersforbigdataanalytics,etc.

•second,integrators,suchasadvancedsoftwaretechnologiesthatcollect,analyze,

integrate,andtrackbigdata,whicharethensharedthroughnetworksandhigh-speedconnectivity.ExamplesincludetheInternetofThings(IoT),theuseof5G,virtual

reality,blockchaintechnologies,etc.

•third,enablersofdigitization,whichprovideaninterfacebetweenhumanintelligenceandAI.Examplesincludedrones,sensors,connectedwearables,etc.

•finally,processimprovers,whichareaimedatboostingperformance,improving

footprintsofoperations,andrespondingtoenvironmentalandsocialrequirements.Examplesincludeelectricvehicles,watermanagementtechnologies,renewable

energysourcesetc.

5

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

6

FIGURE1.Taxonomyofdisruptivetechnologiesintheminingsector

Usersofbigdata

Analytics

Machinelearning

Automation

Digitaltwin

Integrators/

trackersofbigdata

IoT

Blockchains

Smartcontracts

Enablersofdigitalization

Sensors

Wearables

Drones

Satellites

Processimprovers

TailingrecoveryRenewableenergy

Watermanagement

technologies

Electricvehicles

Source:Ramdoo,2019.1

2.1.1UsersofBigData:DevelopmentofsmartOEMmachinesanddevices

Usingbigdata,certaintechnologiesenablemachinestocomprehend,learn,andrespond

toinformation,adjustingtheiractionsasconditionsevolve(PwC,2017).SmartOEM

machinesembeddedwithmachineinterfacecapabilitiesallowthemachinetobecontrolled(stop,teleoperate,slowdown,etc.)byamachinecontrolsystem.Thesemachinescanalso

beconnectedandexchangedatawithothersmartdevices(cameras,wearables,radar,

etc.)throughacommunicationnetwork(radio,4Gnetwork,wi-fi,etc.).Theyhavesome

automationcapabilities,suchaschangingsomeconsumables,suchasdrillbits,withoutanyhumanintervention.

Theyareoftenassociatedwithenablersofdigitalizationsuchassmartdevices(human-

machineinterface,tablets,wearables,cameras,sensors,drones,robots,etc.),whicharealsoabletoconnecttoanetwork,exchangedatawitheachotherandwithmachinecontrol

systems,etc.Forinstance,acamerainstalledinatruckcandetectahumanpresenceandsendtheinformationtothemachinecontrolsystem,whichcandecidetoslowdownorstopthemachine.

1SeeRamdoo(2019)foradetailedbreakdownofdisruptivetechnologiesandtheirusesintheminingsector.

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

7

2.1.2Integrators-Advancedsoftware(withhighcomputingcapabilities)

Theseadvancedsoftwaretechnologiescancollectandprocesslargeandcomplexamountsofdatareceivedfromdifferentsources(trucks,cameras,sensors,tablets,radar,othersoftware,etc.).ThesetypesofsoftwarecanuseAIcapabilities,suchasmachinelearning,topredict

and/orrecommendsetpoints(explosivequantityforablast),helpbettervisualizeoperationswithaugmentedreality,etc.

2.1.3EnablersofDigitalization

Theseincludetechnologies,suchasnetworkcommunicationtechnologiesandcloud

computing,thatsupportthefirsttwotypesoftechnologies.Theyallowlargeamountsofdatatobeexchangedamongalltheequipment,software,anddevicesinrealtimethroughhigh-

speedconnectivity,allowinginformationtobesharedandprocessedinstantly.Examplesinclude5Garchitecture,wi-fi,4G,cloudcomputing,etc.

Combiningthesetechnologiesenablestheiruseinsuchcasesascollisionavoidancesystems,aspresentedinBox1.

BOX1.MACHINEINTERFACECONTROL:IMPROVINGCOLLISIONAVOIDANCEATMINESITE

Intelligentvehiclecontroltechnologyenhancessafetyonjobsitesbyproviding

automation,remotecontrol,andcollisionavoidancesolutionsforanymobileequipment(RCTGlobal,2022).Advancedcollisionavoidancesystems,illustratedinFigure2,havethefollowingcomponents:

•collisionavoidancesystem(CAS)monitorstheexternalenvironmentwiththeuseoftheGlobalPositioningSystem(GPS)andothersensors(cameras,radar,etc.)todetectobjectsandevaluatecollisionrisk.

•machineinterfacecontrol(MIC)monitorstheoperator’scontrolsandintentionsandpassesthisinformationtotheCAS,whichcomparesitwiththeexternal

environment.

•theCASusesthisinformationtoprovidewarningstotheMIC,whicharethenpassedontoanoperatororanautomaticmachinefunction(e.g.,“slowdown”or“stop”)to

executeinterventionalcollisionavoidanceactions.

Evidence-BasedResearchontheImpactofNewTechnologiesintheMiningIndustry

8

FIGURE2.IllustrationofCAS

DangerzoneCautionzoneAlarmzone

Safezone

Source:RCTGlobal,2022.

Machinecontrolsystemsalsoenabletele-remoteguidancecontrolandautomation(drivebywire).

2.1.4ProcessImprovers

Significantinvestmentshavebeenmadeintechnologiesaimedatimprovingmining

processestoaddressenvironmentalchallengesandimprovethesustainabilityofoperations.Thesetechnologiescutacrossvariousopportunities.Examplesinclude(a)thedevelopmentofnewmineralore-processingtechnologies;(b)improvedwasteandtailingsmanagement

techniquestoimprovemineralrecovery;(c)water-andenergy-savingtechnologies;and

(d)theadoptionoflow-carbone-mobility,suchaselectricvehicles.Theseareparticularlyimportanttomitigatetheimpactofminingontheenvironment(suchasgreenhousegas

[GHG]emissions)andtofosterenergytransitionawayfromfossilfuel-poweredoperations.

2.2AssessmentFramework

TechnologiesassessedinthisreportarepresentedinTable1.Theyhavebeenselectedbasedontheirstageofdevelopment,theirexpectedimpactonminingoperationsandjobs,andon

thesocio-economiclandscapearoundminesites.Asaresult,theyrepresentgoodproxiesforassessingglobaltechnologicaldevelopmentintheminingsector.Theyillustratethedegreeoftechnologicalintegrationandcanserveasanindicatorofacompany’stechnologicalmaturity.Theadoptionofthesetechnologiesprovidesacomprehensiveviewofhowmini

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论